

ADAPTIVE
WEB DESIGN
Crafting Rich Experiences with
Progressive Enhancement

by Aaron Gustafson

Chattanooga, Tennessee

ADAPTIVE WEB DESIGN
Crafting Rich Experiences with
Progressive Enhancement
by Aaron Gustafson

Easy Readers, LLC
PO Box 4370
Chattanooga, Tennessee
37405 USA
http://easy-readers.net

Please send errors to errata@easy-readers.net

Editor: Krista Stevens
Project Manager: Kelly McCarthy
Interior Layout: Jessi Taylor
Cover Design: Veerle Pieters
Technical Editors: Craig Cook and Derek Featherstone
Indexer: Jessica Martin

Copyright © 2011 Aaron Gustafson
All rights reserved
ISBN 978-0-9835895-2-5
Library of Congress Control Number: 2011929159

First Edition

Printed and bound in the United States of America

For Kelly

v

ACKNOWLEDGEMENTS
Without the mentorship and assistance of so many of my friends
and colleagues in this industry, not only would this book have never
been written, but I would not have been in a position to write it. I’d
like to take a moment to extend them my sincerest gratitude:

To Molly Holzschlag and Jeffrey Zeldman for taking me under their
wings and helping hone my skills as both a speaker and writer. And
to the numerous conference organizers and publications who’ve
given me the opportunity to apply those skills.

To Carolyn Wood for helping shape some of my early drafts and to
Krista Stevens for finding the crux of my arguments, streamlining
my prose, and taming my inner wiseass.

To Craig Cook and Derek Featherstone for keeping my code on the
straight and narrow and to the handful of early reviewers for giving
me thoughtful advice (and corrections): Dan Cederholm, Simon
Collison, Kristina Halvorson, Christian Heilmann, Whitney Hess,
Jeremy Keith, Dan Rubin, and Jonathan Snook.

To the Easy Designs team for their attention to detail and invaluable
assistance crafting this book: Jessica Martin, Daniel Ryan, Jessi
Taylor, Matthew Turnure, and Laura Helen Winn.

To Veerle Pieters for making time in her busy schedule to design me
an absolutely beautiful cover.

And, of course, to Kelly, for finding me the time to write this book,
helping me organize my thoughts, and then pushing me to get it done.

vi

TABLE OF CONTENTS
vii FOREWORD

1 CHAPTER 1
THINK OF THE USER,
NOT THE BROWSER

17 CHAPTER 2
PROGRESSIVE ENHANCEMENT
WITH MARKUP

42 CHAPTER 3
PROGRESSIVE ENHANCEMENT
WITH CSS

71 CHAPTER 4
PROGRESSIVE ENHANCEMENT
WITH JAVASCRIPT

97 CHAPTER 5
PROGRESSIVE ENHANCEMENT
FOR ACCESSIBILITY

118 CHAPTER 6
TAKE IT AWAY

vii

FOREWORD
One glorious afternoon in March, 2006, as a friend and
I hurried past Austin’s Downtown Hilton Hotel to catch
the next session of the SXSW Interactive Festival, a young
stranger arrested our progress. With no introduction or
preliminaries, he announced that he was available to speak
at An Event Apart, a conference for web designers that Eric
Meyer and I had launched three months previously. Turning
to my companion with my best impression (which is none too
good) of Mr Burns of “The Simpsons,” I asked, “Who is this
brash young upstart, Smithers?”

The brash young upstart quickly became an essential
colleague. In the months and years that followed, Aaron
Gustafson created dazzling front- and back-end code for
some of my agency’s most demanding clients. Just as
importantly, he brilliantly tech-edited the third edition of
Designing With Web Standards. The job largely consisted
of alerting Ethan Marcotte and me to the stuff we don’t
know about web standards. I’ll let you think about that
one. For five years now, Aaron has also been a tough but
fair technical editor for A List Apart magazine, where he
helps authors succeed while ensuring that they are truly
innovative, that their methods are accessible and semantic,
and (thanks to his near-encyclopedic knowledge) that
they give all prior art its due. Moreover, Aaron has written
seminal pieces for the magazine, and, yes, he has lectured at
An Event Apart.

Given my experiences with the man and my admiration for
his knowledge and abilities, I was thrilled when Aaron told
me the premise of this book and began letting me look at
chapters. This isn’t just another web design book. It’s an
essential and missing piece of the canon. Our industry has
long needed a compendium of best practices in adaptive,
standards-based design. And with the rise of mobile, the

viii

recent significant improvements in desktop and phone
browsers, and the new capabilities that come with HTML5,
CSS3, and gestural interfaces, it is even more vital that we
who make websites have a reliable resource that tells us how
to take advantage of these new capabilities while creating
content that works in browsers and devices of all sizes and
widely differing capabilities. This book is that resource.

The convergence of these new elements and opportunities
is encouraging web professionals to finally design for the
web as it always should have been done. Adaptive design is
the way, and nobody has a wider command than Aaron of
the thinking and techniques required to do it well. In these
pages you will find all that thinking and those methods.
Never again will you lose a day debating how to do great
web design (and create great code) that works for everyone.
I plan to give this book to all my students, and to everyone I
work with. I encourage you to do likewise. And now, enough
preliminaries. Dive in, and enjoy!

Jeffrey Zeldman
Author, Designing With Web Standards 3rd Edition

CHAPTER 1:
THINK OF THE USER,
NOT THE BROWSER
If you’ve been working on the web for any amount of time,
you’ve likely heard (or even used) the term “progressive
enhancement” before. As you probably know, it is the
gold standard of how to approach web design. But what is
progressive enhancement really? What does it mean? How
does it work? And how does it fit into our workflow in a
time of rapidly evolving languages and browsers?

These are all good questions and are the very ones I answer
throughout this book. As you’ll soon see, progressive
enhancement isn’t about browsers and it’s not about
which version of HTML or CSS you can use. Progressive
enhancement is a philosophy aimed at crafting experiences
that serve your users by giving them access to content
without technological restrictions.

Cue the kumbayahs, right? It sounds pretty amazing, but
it also sounds like a lot of work. Actually, it’s not. Once you
understand how progressive enhancement works, or more
importantly why it works, you’ll see it’s quite simple.

3

As we progress through this book you’ll see numerous
practical ways we can use progressive enhancement in
conjunction with HTML, CSS, and JavaScript to create
adaptive websites that will not only serve your users well,
but provide them with a fantastic experience, no matter
what browser or device they are using to access it.

But before we get down to the brass tacks of application,
we need to discuss the hows and whys of progressive
enhancement, the underpinnings of the philosophy.

ADAPT OR DIE
And when it comes right down to it, progressive enhancement
relies on one principle: fault tolerance.

Fault tolerance is a system’s ability to continue to operate
when it encounters an unexpected error. This property
makes it possible for a lizard to regrow its tail and for a
brain to reroute neural connections after a trauma. Nature
has proven herself quite adept at fault tolerance and,
following her example, we’ve incorporated that concept
into our own creations. For example, the oft-lauded “smart
grid” can automatically avoid or mitigate power outages by
sensing (and in some cases anticipating) system problems.

If you use the web, whether as your professional canvas or
simply as a casual consumer, you benefit from fault tolerance
all the time. Not only is it baked into the protocols that route
a request from your web browser to the server you’re trying
to reach, it is sewn into the very fabric of the languages that
have made the web what it is today: HTML and CSS. As
prescribed by the specifications for these two languages,
browsers must ignore anything they don’t understand.
That simple requirement makes progressive enhancement
possible. But more on that in a minute.

ADAPTIVE WEB DESIGN

4

Another interesting aspect of fault tolerance is how it allows
for evolution. Again, looking to nature, you can see this in
areas where climate or other environmental factors have
caused enough of a change that organisms are forced to
adapt, move, or die.

In 1977, the Galapagos Islands experienced a drought that
drastically reduced the availability of the small seeds that
supported the islands’ finch population.1 Eighty-five percent
of the islands’ finches were wiped out due to starvation.
Oddly enough, it was the larger birds that survived. Why?
Because they possessed large beaks capable of cracking the
larger, harder seeds that were available. In the absence of a
drought, the larger finches possessed no distinct advantage
over their smaller relatives, but when the environment
changed, they were perfectly positioned to take advantage of
the situation and not only survived the drought, but passed
their genes along to the next generation of finches which, as
you’d expect, tended to be larger.

Public Domain

Figure 1.1: The varied beaks of Galapagos finches (a.k.a. Darwin’s
Finches, Geospiza fortis) as seen in The Zoology of the Voyage of
H.M.S. Beagle, by John Gould.

THINK OF THE USER, NOT THE BROWSER

5

HTML and CSS have a lot in common with the Galapagos
finches. Both were designed to be “forward compatible,”
meaning everything we write today will work tomorrow
and next year and in ten years. They are, in a sense, the
perfect finch: designed to thrive no matter how the browsing
environment itself changes.

These languages were designed to evolve over time, so
web browsers were instructed to play by the rules of fault
tolerance and ignore anything they didn’t understand. This
gives these languages room to grow and adapt without
ever reaching a point where the content they ensconce and
style would no longer be readable or run the risk of causing
a browser to crash. Fault tolerance makes it possible to
browse an HTML5-driven website in Lynx and allows us
to experiment with CSS3 features without worrying about
breaking Internet Explorer 6.

Understanding fault tolerance is the key to understanding
progressive enhancement. Fault tolerance is the reason
progressive enhancement works and makes it possible to
ensure all content delivered on the web is accessible and
available to everyone.

As fault tolerance has been a component of HTML and CSS
since the beginning, you’d think we (as web professionals) would
have recognized their importance and value when building our
websites. Unfortunately, that wasn’t always the case.

“GRACEFUL” MISSTEPS
For nearly a decade after the creation of the web, the medium
evolved rapidly. First, the National Center for Supercomputing
Applications at the University of Illinois—NCSA for short—
gave us Mosaic, the first graphical browser, and HTML
got the img element. Then came audio. Then video. Then
interaction. It was a challenge just to keep up with the

ADAPTIVE WEB DESIGN

6

rapidly-evolving technology and in our rush to keep up, we
lost sight of fault tolerance and began building according
to the latest fashion. Some of our sites consisted entirely of
full-page image maps layered atop elegantly designed JPEGs.
Others became shrines to Macromedia’s Flash and Director.
Few were usable and even fewer were accessible.

This era gave rise to the development philosophy known as
“graceful degradation.”

Graceful degradation was the philosophical equivalent of fault
tolerance’s superficial, image-obsessed sister who is fixated on
the latest fashions and only hangs out with the cool kids. As
applied to the web, graceful degradation amounted to giving
the latest and greatest browsers the experience of a full-course
meal, while tossing a few scraps to the sad folk unfortunate
enough to be using an older or less-capable browser.

During the heyday of graceful degradation, we focused on
making sure our site worked in modern browsers with the
greatest market share. Testing for support in older browsers, if
we did it at all, was relegated to the end of the list of priorities.

Our reasoning was simple: HTML and CSS are fault tolerant,
so at least the user will get something, which (of course)
ignored the fact that JavaScript, like other programming
languages, is not fault tolerant (i.e., if you try to use a method
that doesn’t exist, it throws an error); instead, the scripts
and applications using JavaScript must be written such that
they can either recover from an error (perhaps by trying an
alternate method of execution) or predict the potential for an
error and exit before it’s experienced.

But hardly anyone was doing that because our focus was ever
forward as we looked for the next shiny toy we could play
with. We assumed that older browsers would have an inferior
experience, so we made the justification that it wasn’t worth
spending the time to ensure it was at least a decent, error-free

THINK OF THE USER, NOT THE BROWSER

7

one. Sure, we’d address the most egregious errors, but beyond
that, users were left to fend for themselves. (Sadly, some of us
even went so far as to actively block browsers we didn’t want
to bother supporting.)

THE RISE OF TOLERANCE
Over time, smart folks working on the web began to realize
that graceful degradation’s emphasis on image over substance
was all wrong. They saw that graceful degradation was directly
undermining both content availability and accessibility.
These designers and developers understood that the web was
intended for the distribution and consumption of content—
words, images, video, etc.,—and began basing all of their
markup, style, and interaction decisions on how each choice
would affect the availability of that content.

By refocusing their efforts, developers began to embrace the
fault tolerant nature of HTML and CSS as well as JavaScript-
based feature detection to enrich a user’s experience. They
began to realize that a great experience needn’t be an
all-or-almost-nothing proposition (as was the case under
graceful degradation), but instead web technologies could
be applied as layers that would build upon one another to
create richer experiences and interactions; Steve Champeon
of the Web Standards Project perfectly captured the essence
of this philosophy when he christened it “progressive
enhancement.”1

Tasty at any level
One analogy I like to use for progressive enhancement is the
peanut M&M. At the center of a peanut M&M is, well, the
peanut. The peanut itself is a rich source of protein and fat; a

1. http://www.hesketh.com/publications/inclusive_web_
design_for_the_future/

ADAPTIVE WEB DESIGN

http://www.hesketh.com/publications/inclusive_web_design_for_the_future/

8

great food that everyone can enjoy (except those with
an allergy, of course). In a similar sense, the content of our
website should be able to be enjoyed without embellishment.

Slather that peanut with some chocolate and you create a
mouthwatering treat that, like the peanut, also tastes great. So
too, content beautifully organized and arranged using CSS is
often easier to understand and certainly more fun to consume.

By coating our nutty confection with a sugary candy shell,
the experience of this treat is improved yet again. In a
similar sense, we can cap off our beautiful designs with
engaging JavaScript-driven interactions that ease our
movement through the content or bring it to life in unique
and entertaining ways.

This is, of course, an oversimplification of progressive
enhancement, but it gives you a general sense of how it
works. Technologies applied as layers—HTML, then HTML
& CSS, then HTML, CSS & JavaScript—can create different
experiences, each one equally valid (and tasty). And at the
core of it all is the nut: great content.

The content-out approach
The web is all about information. Every day, on every site,
information is disseminated, requested, and collected.
Information exchange has been crucial to the growth of

Figure 1.2: A confectionary continuum.

THINK OF THE USER, NOT THE BROWSER

9

the web and will no doubt continue to drive its continued
expansion into just about every facet of our daily lives.

As such an important aspect of the web, fostering the
exchange of information, should be our primary focus when
constructing any web interface. Progressive enhancement
ensures that all content (that is to say the information
contained in a website) is both available to and usable by
anyone, regardless of her location, the device she is using to
access that information, or the capabilities of the program
she is using to access that content. Similarly, content
collection mechanisms—web forms, surveys, and the like—
also benefit greatly from progressive enhancement because
it ensures they are universally usable and, hence, better at
doing their job.

Fundamentally, progressive enhancement is about
accessibility, but not in the limited sense the term is
most often used. The term “accessibility” is traditionally
used to denote making content available to individuals
with “special needs” (people with limited motility,
cognitive disabilities, or visual impairments); progressive
enhancement takes this one step further by recognizing
that we all have special needs. Our special needs may also
change over time and within different contexts. When I
load up a website on my phone, for example, I am visually
limited by my screen resolution (especially if I am using
a browser that encourages zooming) and I am limited in
my ability to interact with buttons and links because I am
browsing with my fingertips, which are far larger and less
precise than a mouse cursor.

As we’ve covered, sites built with graceful degradation as
their guiding principle may work great in modern browsers,
but come up short when viewed in anything less than the
latest and greatest browsers for which they were built. In
a non-web sense, it puts the user in a position where, like
a young child at an amusement park, she may miss out on

ADAPTIVE WEB DESIGN

10

a great experience because she isn’t tall enough to ride the
Tilt-a-Whirl. Similarly, users without the “right” browser
will likely experience issues (and errors) accessing the site’s
content, if they can access it at all.

By contrast, a website built following the philosophy of
progressive enhancement will be usable by anyone on any
device, using any browser. A user on a text-based browser
like Lynx won’t necessarily have the same experience as a
user surfing with the latest version of Safari, but the key
is that she will have a positive experience rather than no
experience at all. The content of the website will be available
to her, albeit with fewer bells and whistles, something that
isn’t guaranteed with graceful degradation.

While philosophically different, from a practical standpoint
progressive enhancement and graceful degradation can
look quite similar, which can be confusing. To bring
the differences into focus, I like to boil the relationship
between the two philosophies down to something akin to
standardized testing logic: all experiences that are created
using progressive enhancement will degrade gracefully
in older browsers, but not all experiences built following
graceful degradation are progressively enhanced.

Limits? There are no limits.
During the heyday of graceful degradation, websites became
very much like the amusement park I mentioned earlier: “you
must be this high to ride.” The web was (and, sadly, still is)
littered with sites “best viewed in Netscape Navigator 4” and
the like. With the rise of progressive enhancement and web
standards in general, we moved away from that practice,
but as more sites began to embrace the JavaScript technique
known as Ajax, the phenomenon resurfaced and many sites
began requiring JavaScript or even specific browsers (and
browser versions) to view their sites. It was the web’s own

THINK OF THE USER, NOT THE BROWSER

11

B-movie sequel: The Return of the Browser-Breaking, User-
Unfriendly Methods We Thought We’d Left Behind.

Over time, the fervor over Ajax died down and we began
building (and in some cases rebuilding) Ajax-based sites
following the philosophy of progressive enhancement. Then
along came Apple’s HTML5 Showcase with its pimped out CSS
transitions and animations.2 When we finished wiping the
drool off our desks, many of us began incorporating these shiny
new toys into our work, either because of our eagerness to play
with these features or at our clients’ behest. Consequently, sites
began cropping up that restricted users by requiring a modern
Webkit variant3 in order to run. (Damn the nearly 80% of
browsers that didn’t include.)

When self-realization hit that requiring technologies that
are not universally available ran counter to progressive
enhancement, some web designers and developers declared
the philosophy “limiting” and began drifting back toward
graceful degradation. Progressive enhancement, they felt,
forced them to focus on serving older browsers which,
frankly, weren’t nearly as fun to work with. What they failed
to realize, however, was that progressive enhancement
wasn’t limiting them; their own understanding of the
philosophy was.

2. http://www.apple.com/html5/

3. Webkit is the engine that powers a number of browsers and
applications. It has excellent CSS support and boasts support for
quite a few snazzy CSS capabilities (such as CSS-based animations)
yet to be matched by other browsers. Webkit can be found in Apple’s
Safari, Google’s Chrome and Android browsers, the Symbian
S60 browser, Shiira, iCab, OmniWeb, Epiphany, and many other
browsers. It forms the basis for Palm’s WebOS operating system
and has been integrated into numerous Adobe products including
their Adobe Integrated Runtime (AIR) and the CS5 application suite.

ADAPTIVE WEB DESIGN

12

Progressive enhancement isn’t about browsers. It’s about
crafting experiences that serve your users by giving them
access to content without technological restrictions.
Progressive enhancement doesn’t require that you provide the
same experience in different browsers, nor does it preclude
you from using the latest and greatest technologies; it simply
asks that you honor your content (and your users) by applying
technologies in an intelligent way, layer-upon-layer, to craft
an amazing experience. Browsers and technologies will come
and go. Marrying progressive enhancement with your desire
to be innovative and do incredible things in the browser is
entirely possible, as long as you’re smart about your choices
and don’t lose sight of your users.

Progressive enhancement =
excellent customer service
Imagine, for a moment, that you are a waiter in a nice
restaurant. Your job (and your tip) depends upon your
attention to detail and how well you serve your customers.
One measure of your attentiveness is how empty you let
a customer’s water glass become before refilling it. An
inattentive waiter might let the glass sit empty for several
minutes before refilling it. Someone slightly more on the ball
might only let it hit the halfway mark before topping it up. A
waiter who excels at meeting his customer’s beverage needs
would not only make sure the water level never fell even that
far, but he would even manage to refill the glass without the
customer even realizing it. Whose customers do you think
walk away the most satisfied? And, if we’re judging solely
based on satisfactory hydration, who do you think is likely to
get the best tip?

As web designers and developers, we should strive to be as
good at our job as that attentive, unobtrusive waiter, but it
isn’t a simple task. Just as a waiter has no idea if a customer
coming through the door will require frequent refills or

THINK OF THE USER, NOT THE BROWSER

13

few, we have no way of knowing a particular user’s needs
when they arrive on our site. Instead, we must rise to meet
those needs. If we’re really good, we can do so without our
customers even realizing we’re making special considerations
for them. Thankfully, with progressive enhancement’s
user and content-focused approach (as opposed to graceful
degradation’s newest-browser approach), this is easily
achievable.

RISING TO THE OCCASION
When approaching a project from a progressive enhancement
perspective, your core focus is the content and everything
builds upon that. It’s a layered approach that rises to meet
a user’s “needs” by paying attention to the context within
which a page is accessed (a combination of the browser’s
capabilities and, to a lesser extent, the medium in which it is
operating) and adapting the user experience accordingly.

The baseline experience is always in the form of text. No
specific technology shapes this layer, instead its success or
failure relies entirely on the skills of the copywriter. Clear,
well-written copy has universal device support and does
wonders to improve the accessibility of the content to users.
Furthermore, no matter how the HTML language evolves over
time, the imperative that browsers be fault tolerant in their
treatment of HTML syntax ensures that, no matter what, the
content it describes will always be available in its most basic
form: as text.

The second level of experience comes from the semantics
of the HTML language itself. The various elements and
attributes used on a page provide additional meaning and
context to the written words. They indicate important
notions such as emphasis and provide supplementary
information, such as the source of a quote or the meaning of
an unfamiliar phrase.

ADAPTIVE WEB DESIGN

14

The third level of experience is the audio-visual one,
expressed through the use of CSS and the use of inline
images, audio, and video. As with HTML, implementations
of CSS within a browser are necessarily fault tolerant, so
browsers ignore that which they don’t understand; a fact that
makes progressive enhancement in CSS a possibility.

The fourth level of experience is the interactive one. In the
standards world, this level relies almost entirely on JavaScript,
though interaction on the web has been realized through other
technologies such as Flash or even Java applets.

The final level is realized through the application of enhanced
semantics and best practices contained within and used in
conjunction with the Web Accessibility Initiative’s Accessible
Rich Internet Applications (WAI-ARIA) spec. These
enhancements to the page pick up where the HTML spec has
traditionally left off (though HTML5 does include some of the
enhanced ARIA semantics in its lexicon).

Figure 1.3: Graph of progressive enhancement

THINK OF THE USER, NOT THE BROWSER

15

These levels of experience (which can also be thought of as
levels of support), when stacked upon one another, create an
experience that grows richer with each step, but they are by
no means the only experiences that will be had by a user. In
fact, they are simply identifiable milestones on the path from
the most basic experience to the most exceptional one. A
user’s actual experience may vary at one or more points along
the path and that’s alright; as long as we keep progressive
enhancement in mind, our customers will be well served.

LET’S DIG IN
The remainder of this book will take you on a tour of the
various mile markers on the progressive enhancement
highway, starting with markup and continuing through CSS,
JavaScript and, finally, ARIA. Along the way, we’ll examine
the application of progressive enhancement techniques on
an event page found on Retreats4Geeks.com. By design,
this book is not intended to be an exhaustive compendium of
progressive enhancement techniques, so the examples will be
brief and focused, exposing you to current best practices and
jump-starting your use of progressive enhancement in your
own work.

ADAPTIVE WEB DESIGN

http://Retreats4Geeks.com

16

Figure 1.4: The event page from Retreats4Geeks.com that we will be
dissecting throughout this book.

THINK OF THE USER, NOT THE BROWSER

http://Retreats4Geeks.com

“The meaning is in the
content of the text and
not in the typeface.”

— WIM CROUWEL

CHAPTER 2:
PROGRESSIVE
ENHANCEMENT
WITH MARKUP
When it comes to the web, markup calls the shots. It is the
foundation upon which every beautiful design and each
amazing experience is built. Whether your preferred flavor is
HTML or its more rigorous sibling, XHTML, each element has
a purpose and can profoundly affect the user experience for
better or worse, depending on how you use (or abuse) it.

FROM A ROUGH START TO
THE RIGHT WAY™

When we first began building web pages, many of us
misunderstood the importance of good markup. Those of us
coming to the web from a programming background often
considered learning HTML beneath us, so we never put in the
time to come to grips with the semantics it provided. Those
of us who came to the web from a design background didn’t
understand the importance of semantics either. We thought
only of the presentational aspect of a web page and latched
on to the table as a means of laying out pages on a grid, then

19

we went hog-wild and found hundreds of other uses for the
table element, many of which supplanted existing (and well-
supported) semantic elements (like lists).

In many offices across the globe, advocacy for semantic
application of HTML fell on deaf ears; the argument was seen
as a largely idealistic one because: 1) the fact remained that
old-school websites looked okay in modern browsers and 2)
the case for greater web accessibility was lost on many people
who had no first-hand experience of using the web with a
disability. Then Google came along and changed everything.
Suddenly, semantic markup was important.

Google was the first search engine to take semantics into
account when indexing web pages. Starting with the humble
anchor (a) element, the cornerstone of their original PageRank
algorithm, Google pioneered the use of semantic markup
to infer meaning and relevancy. The other search engines
soon followed and, as search engine spiders began hunting
for other meaningful HTML elements on web pages (e.g.,
h1 which indicates the most important content on a page),
semantic markup became more important to the business
world because proper use of it meant a better ranking in
search engines and, thereby, a greater opportunity to attract
new customers.

THE SEMANTIC FOUNDATION
If content were soil, semantic markup would be the compost
you’d add to ensure a productive garden. It enriches the
content, providing your users with clues about intent and
context, as well as supplementary information about the
content itself.

Take, for example, the abbreviation element (abbr). It is used to
denote abbreviations (and acronyms, now that it has officially
replaced the acronym element):

ADAPTIVE WEB DESIGN

20

Gatlinburg, <abbr title="Tennessee">TN</abbr>

In this simple HTML snippet, you can see how the abbreviation
enhances the letters “TN” by informing the user that they
stand for “Tennessee.”

As HTML has evolved, its vocabulary has steadily expanded to
offer more options for describing the content it encapsulates.
The advent of HTML5 ushered in a slew of new semantic
options (such as header) and even augmented a few existing
ones (such as the aforementioned abbr that took over for
the ousted acronym). As we proceed through this chapter,
we’ll employ several of these new/revised elements and I will
provide a little background about why they are an appropriate
choice for marking up content.

Let’s get started.

SAYING WHAT WE MEAN
Looking at the Retreats 4 Geeks web page1, it may be hard
to figure out where to start, but we’ll begin with the most
important content: the name of the site and the links to the
various sections of the page (since this is, for our purposes, a
single-page website).

1. If you haven’t already downloaded the sample files, you can do so by
visiting adaptivewebdesign.info

Figure 2.1: A screen shot of the site highlighting the site name and
navigation elements

PROGRESSIVE ENHANCEMENT WITH MARKUP

http://adaptivewebdesign.info

21

Let’s consider this component from a semantician’s point
of view, starting with the logo. The Retreats 4 Geeks logo is
an image, so we should use an img element to mark it up.2
It’s also pretty important because it provides a context for
the entire page, so it should be wrapped in an h1, an element
reserved for the most important content on a page:

<h1></h1>

Though the example page is written using HTML5, I’ve always
been more comfortable with the XML serialization of the
language, so I’ve chosen to stick with that syntax (as evidenced
by the trailing slash on the img element). It is more a matter of
preference than requirement.

Moving on to the navigation, we’re presenting a list of links,
so it should be marked up as such. As the order of the links
corresponds to the order of the sections on the page, the list
should probably be of the ordered variety (ol). Each link gets
placed in a list item (li) and wrapped in an anchor element (a):

 Details
 Schedule
 Instructors
 Lodging
 Location

Up until this point, we’ve made the obvious choices with
regard to markup, employing semantics we’ve had in HTML
since the beginning. Just over a year ago, we would have
likely stopped here and considered the header complete,
but HTML5 gives us the opportunity to improve both the
semantic value and the accessibility of this content.

2. Yeah, I know, you could also use the object element or make it
text and use CSS to replace it with an image, but we’re going for
simplicity here.

ADAPTIVE WEB DESIGN

22

Traditionally, we might have employed a page division (div)
with a semantic identifier (id) of “header” to contain these
two elements. Divisions, as you’ll recall, are used to group
content, but they provide no context as to the purpose or
function of that group (which is why we would identify it as
the “header”). HTML5, however, introduces an element that
provides the explicit semantic meaning for that division:
header.

Semantically, a header is used to demarcate any content that
is summarily important to a page or section of a page. It can
be used to encapsulate headings or heading groups (contained
in the new hgroup element), relevant navigational aids, and
introductory content. As such, it makes a perfect container
for the title of our page and the list of anchors to each article
within the page.

HTML5 also grants us another more appropriate option
when it comes to the navigation. Whereas we would have
traditionally identified the ordered list as “nav” or “main-
nav,” HTML5’s nav element more directly expresses the
semantics we’re trying to imbue the ol with by providing
that semantic id. The nav element can be used to wrap any
group of navigational links and functions as the semantic
equivalent of the ARIA landmark role of “navigation” (which
we’ll discuss more in Chapter 5).

With these additions, the markup for this section is now:

<header>

 <h1></h1>

 <nav>

 Details
 Schedule
 Instructors

PROGRESSIVE ENHANCEMENT WITH MARKUP

23

 Lodging
 Location

 </nav>

</header>

And, thanks to the fact that they ignore anything they don’t
understand, the markup we’ve used will work in every
browser, regardless of age. Sure, modern browsers may treat
the newer elements differently, but even text-based browsers
(such as Lynx) will be able to access the content. Devoid
of style and stripped of JavaScript-based interactivity, the
markup just works, providing us with the second level
of support in the progressive enhancement continuum.
(Remember: the content itself forms the crucial first level).

INVISIBLE AND ADVISORY
As good as this markup is, we’ve neglected a major
accessibility requirement by not providing any alternate
text for our logo image (expressed using the alt attribute).
“Alt text,” as it’s most often known,3 provides a text-based
back-up for users who have images turned off; it is also
the content that is read to users of screen reading software
(such as the blind), which is why its inclusion is critical.

Returning to the example, I’ve added a simple alt attribute:

<h1><img src="i/logo.png" alt="Retreats 4
 Geeks"/></h1>

3. Some people get very grumpy when they hear the term “alt tag”
because tags and attributes are very different things (attributes are
applied to the opening tag of an element). If you ever find yourself
starting to pronounce a “t” after saying “alt,” catch yourself and roll
right into “text.” “Alt attribute” is a bit of a mouthful anyway.

ADAPTIVE WEB DESIGN

24

When the image in question is a logo or conveys information
needed to understand the page or accomplish key tasks,
alt text should always be supplied. For all other images, it’s
perfectly legitimate to leave the alt text blank (alt=""). I
would even go so far as to say it’s advisable to use an empty
alt attribute in any instance where the image doesn’t supply
necessary information. I say this for two reasons: 1) no one
really wants to read vacuous copy like “Smiling man throws
a Frisbee to a leaping Golden Retriever” any more than
someone else wants to write it; and 2) screen readers will
speak the contents of the alt attribute aloud, but will skip any
images with empty alt attributes.4

Whereas the alt attribute is used to provide alternative
content, the title attribute is used to provide advisory
information about an element. In the case of the navigation
links in the above example, we can use title to provide the
user with information about where each link will take her:

<a href="#location" title="Get the 411 on
 Gatlinburg, Tennessee">Location

Similarly, further down the page in the “location” section,
title provides context to the link that wraps the map:

<a href="http://maps.google.com/…" title="View
 Gatlinburg, Tennessee on Google Maps">
 <img src="http://maps.google.com/…" alt="A map
 showing the location of Gatlinburg, Tennessee"/>

4. A screen reader will actually say “image” each time it encounters an
img lacking an alt attribute, so be kind to screen reader users and
don’t forget to include them.

PROGRESSIVE ENHANCEMENT WITH MARKUP

25

AD-HOC SEMANTICS
HTML is filled with attributes that help enrich the elements
they adorn. It prescribes a number of “fixed use” ones, like
alt and title, but it also offers a handful of attributes that
can be used to build upon the language’s native semantics in
a less formal way. I’m talking, of course, about id and class.

When Dave Raggett drafted a specification for HTML 3.0,5 it
contained two new concepts: classification and identification,
expressed via the class and id attributes respectively.6 These

5. HTML 3.0 was an ambitious spec, introducing numerous tags and
attributes. Many of those new constructs were dropped by the time
it reached recommendation status as HTML 3.2, but the class
and id attributes survived. Funny enough, some of the very same
constructs proposed in HTML 3.0 have found their way back into
the HTML lexicon, either formally as part of HTML5 or quasi-
formally as microformats.

6. It’s worth noting that class and id each make a (very) brief
appearance in the HTML 2 spec (http://www.ietf.org/rfc/
rfc1866.txt), but were not formally-defined attributes. They
were simply used to demonstrate the fault tolerant way in which
browsers should treat unknown attributes.

Figure 2.2: A screen shot of the location portion of the page with a cursor
over the map.

ADAPTIVE WEB DESIGN

26

two attributes were not formally introduced into the HTML
lexicon until HTML 4.0, but were implemented in browsers
around the same time as Cascading Style Sheet (CSS) support
was added. And CSS, of course, brought us two simple
selectors that targeted these attributes explicitly, causing
some unfortunate confusion over the intended use of class
and id from the get-go.

For years, nearly every web developer working with CSS
thought the correlation between the attributes and the
selectors was intentional, believing that id and class were
intended purely for use with style sheets. You can hardly blame
us though, CSS Level 1 did not provide many mechanisms for
selecting elements, so it made sense that the class selector
(e.g., ul.menu) and the id selector (e.g., div#content)
would have been introduced (along with their corresponding
attributes) for the purposes of both the general and specific
application of style, respectively.7

Thankfully, we now understand how the class and id
attributes were meant to operate. The class attribute was
introduced specifically to address the limited set of elements
within the HTML lexicon:

As time goes by, people’s expectations change, and more
will be demanded of HTML. One manifestation of this is
the pressure to add yet more tags. HTML 3.0 introduces a
means for subclassing elements in an open-ended way. This
can be used to distinguish the role of a paragraph element
as being a couplet in a stansa [sic], or a mathematical term
as being a tensor. This ability to make fresh distinctions can
be exploited to impart distinct rendering styles or to support
richer search mechanisms, without further complicating the
HTML document format itself.8

7. And the HTML 3 draft did allow for this use, among others. The
draft is available at http://www.w3.org/MarkUp/html3/html3.txt.

8. From the “Scalability” section of the HTML 3 draft (see footnote 7).

PROGRESSIVE ENHANCEMENT WITH MARKUP

27

The intent was that this attribute would contain a list of
subclasses for the particular element they were applied to,
with the classes listed from most general to most specific:9

The spec introduced the id attribute for the purposes of
identifying a specific element on the page (this is why each
id on a page needs to be unique). In practice, this identifier
would be used as a reference point for style rules (#details
{ … }), scripts (document.getElementById(‘details’)),
and anchors (). You may recall that we
actually used that last mechanism in the navigation introduced
earlier in the chapter.

As all of the information for the Retreats 4 Geeks event is
included on a single page, I’ve grouped each chunk of content
into separate article elements10, each with a unique id.
The article element was introduced as part of HTML5
and demarcates content that forms an independent part of
the document, such as a newspaper article, blog post, or,
in our case, a distinct topic. Each of the articles on the page
is then targeted, using its id as an anchor reference, by the
navigation links. Clicking one of these links will jump a user
directly to the appropriate content:

9. You’ll see this throughout the HTML 3 draft, whenever class is
defined for an element.

10. Not to be confusing, but HTML5 also introduces the section
element (also seen in the above code example). In HTML5 parlance,
the section element denotes a section of content (go figure, right?). In
terms of overall organization, I could have declared the whole page an
article, making each distinct chunk a section of that article, but
I decided that individual article elements made more sense because
each chunk of content is independent enough that it could easily exist
on its own page. The semantic difference between the two is modest
at best and the choice of one over the other is really at the discretion
of the author.

ADAPTIVE WEB DESIGN

28

<body>
 <header>

<h1><img src="/2010/retreat-js/i/logo.png"
alt="Retreats 4 Geeks"/></h1>

 <nav>

 <a href="#details" title="Find out what
 this retreat is all about">Details
 <a href="#schedule" title="Get familiar
 with what this retreat will cover">Schedule

 …

 </nav>

 </header>
 <div id="content">

 <article id="details">…</article>
 <article id="schedule">…</article>
 …

 </div>
</body>

The class and id attributes allow page authors to create
their own semantics on top of those that are part of the
spec. Together, these ad-hoc semantics imbue the markup
with greater meaning and, over time, have gravitated toward
a common set of classifications and identifiers in use across
the globe (e.g., div#header and ul#nav). This common
set of classifications and identifiers has, in turn, provided
valuable feedback in the development of the HTML language
itself (resulting in additions like HTML5’s header and
nav elements, which we reviewed earlier) and fostered the
development of a community-driven set of extensions to
HTML known as “microformats.”

PROGRESSIVE ENHANCEMENT WITH MARKUP

29

CODIFIED CONVENTIONS
Microformats are a set of community-driven specifications
for how to mark up content to expose semantics (and meta
data) that are not available in HTML (or XHTML). At their
essence, microformats formalize organically-developed coding
conventions into a specification that addresses an oversight
or limitation in HTML. For example, HTML provides no
robust way to mark up contact information or events, so the
community created microformats to fill those needs.

The first microformat arose from a desire to express
associations between individuals on the web and was called
the XHTML Friends Network (“XFN” for short). Though not
developed as a “microformat” (that term came later), XFN was
a perfect example of extending the semantics of HTML with a
specific goal in mind.

Developed by Tantek Çelik, Matthew Mullenweg, and Eric
Meyer, XFN makes use of the oft-neglected rel attribute.
The purpose of rel—which you are probably familiar
with in the context of the link element for inclusion of an
external stylesheet (rel="stylesheet")—is to indicate
the relationship of the target of an anchor to the current
page. The idea was simple: if I wanted to point from my
blog to the blog of a colleague, I could employ XFN and add
rel="colleague" to the link. Similarly, if I was linking
to my wife’s blog, I would use rel="friend co-resident
spouse muse sweetheart co-worker" because she is all
of those things.11

On its own, this additional markup does little more than
provide a bit more information about our relationship and
why I might be linking to another website, but if I use it
for every link in my blog roll and those people, in turn, use
it in theirs, all of a sudden we’ve created a network that is

11. Awwww.

ADAPTIVE WEB DESIGN

30

navigable programmatically, creating myriad opportunities
for data mining and repurposing. And that’s exactly what
happened: XFN spread like wildfire. Software developers
integrated it into popular blogging tools (e.g., WordPress,
Movable Type) and developers at nearly every site on the
“social web” (e.g., Twitter , Flickr, Last.fm) began adorning
user profile pages with the special case of rel="me" (used to
link from one web page you control to another), enabling tools
like Google’s Social Graph to quickly build a full profile of
their users starting from a single URL.12

An example of XFN in the Retreats 4 Geeks page can be found
in the footer13:

<footer>

 <p id="copyright">©2010 Retreats 4 Geeks. All
 Rights Reserved.</p>

 <p>Retreats 4 Geeks is an <a rel="me"
 href="http://easy-designs.net/">Easy! Designs
 venture.</p>

</footer>

From that simple (yet powerful) beginning, microformats have
increased in number to address common and diverse needs
from marking up a person’s profile (hCard), event listings
(hCalendar), content for syndication (hAtom), and resumes
(hResume), to indicating license information

12. More on the Social Graph API can be found at http://code.
google.com/apis/socialgraph/. Glenn Jones uses this API in
the fantastic JavaScript library Ident Engine (http://identengine.
com/), which he introduced in the pages of A List Apart (http://
www.alistapart.com/articles/discovering-magic/).

13. The footer element is another product of the HTML5 spec and
is intended to encapsulate “meta” information about an article,
section, or page such as the author, copyright information, and
so forth.

PROGRESSIVE ENHANCEMENT WITH MARKUP

http://code.google.com/apis/socialgraph/
http://code.google.com/apis/socialgraph/

31

(rel-license), controlling search engine spidering (rel-nofollow),
and facilitating tagging (rel-tag).14

Almost in parallel with the development of these microformats,
numerous tools sprung up to make use of them. As you can
probably guess from my mention of the Google Social Graph,
search engines have started to pay attention to microformats
and, in some cases, even rank microformatted content higher
than non-microformatted content. Browser add-ons-such as
Operator15 and Oomph16 enable users to extract and repurpose
microformatted content. Microformat parsers are also available
for nearly every programming language and there are even
web-based services, such as Optimus17 and H2VX18, that
give users more direct access to the microformats in use on
their sites.

As you can see, microformats are yet another layer in the
progressive enhancement continuum, enabling us to make
our sites even more useful to our users. After all, how cool is
it that, using a tool like Operator or a service like Optimus,
we can enable users to import an event to their calendar or a
business card to their address book directly from our web
page? I think that’s pretty awesome.

Call me, call me anytime
As our demo website is for an event, the hCalendar
microformat is an obvious place to start, but let’s hold off
on that for a moment and look at how we can apply the

14. The microformats wiki (http://microformats.org/wiki/) keeps
a running list of all microformats and documentation on how to
use them.

15. http://kaply.com/weblog/operator/

16. http://visitmix.com/labs/oomph/

17. http://microformatique.com/optimus/

18. http://h2vx.com/

ADAPTIVE WEB DESIGN

32

hCard microformat to my bio section in the “Instructors”
article. Before we take a look at the markup though, let’s go
over the key hCard classifications.

CLASS PURPOSE

vcard Signifies that hCard is being used. (This should be
the class of the root element containing the hCard
information.)

fn Short for “formatted name,” it’s used to wrap the
name of the person who owns the hCard

url Indicates that a given link takes the user to a web
page about this person

photo Denotes a photo of this person

org Identifies the company or organization of which this
person is a part

role Conveys the role this person holds within the
organization

Table 2.1: Key hCard classifications

The hCard microformat offers many other options for
marking up a person’s profile, but these are the key ones
we’re going to concern ourselves within the context of the
Retreats 4 Geeks website. And, of these five classes, only
“vcard” and “fn” are actually required.

Now let’s take a look at the content we’ve got to work with:

<section id="aaron-gustafson">

 <figure>

 </figure>

 <h1>Aaron Gustafson</h1>

PROGRESSIVE ENHANCEMENT WITH MARKUP

33

<p>Aaron has been working on the web for nearly
 15 years and, in that time, has cultivated a love
 of web standards and an in-depth knowledge
 of website strategy and architecture, interface
 design, and numerous languages (including
 XHTML, CSS, JavaScript, and PHP). Aaron and his
 wife, Kelly, own <a rel="external" href="http://
 easy-designs.net">Easy! Designs, a boutique
 web consultancy based in Chattanooga, TN. When
 not neck deep in code, Aaron is usually found
 evangelizing his findings and sharing his
 knowledge and passion with others in the
 field.</p>

<p>Aaron has trained professionals at <cite>The
 New York Times</cite>, Gartner, and the US
 Environmental Protection Agency (among others),
 and has presented at the world’s foremost
 web conferences, such as An Event Apart and
 Web Directions. He is Group Manager of the
 <a rel="external" href="http://webstandards.
 org">Web Standards Project (WaSP) and
 serves as an Invited Expert to the World Wide Web
 Consortium’s <a rel="external" href="http://www.
 w3.org/2005/Incubator/owea/">Open Web
 Education Alliance (OWEA). He created
 <a rel="external" href="http://ecsstender.
 org">eCSStender, serves as Technical
 Editor for <a rel="external" href="http://
 alistapart.com"><cite>A List Apart</cite></
 a>, is a contributing writer for <a rel="external"
 href="http://netmag.co.uk"><cite>.net
 Magazine</cite>, and has filled a small
 library with his technical writing and editing
 credits. His next book, <cite>Adaptive Web
 Design: Crafting Rich Experiences with
 Progressive Enhancement</cite>, is due out in
 early 2011.</p>

</section>

ADAPTIVE WEB DESIGN

34

You probably noticed that the section has an h1 as its title.
Don’t worry: in HTML5, each section creates a new context
within which it’s okay to restart the headings at h1. It takes a
little getting used to at first, I know, but it makes sense and
addresses the limited number of heading levels quite well.19

If you’ve got keen eyes, you’ve likely already identified exactly
where each of the hCard classes should be applied, but I’ll
step through each one, just to be sure, starting with the
easiest one: “vcard.” This classification needs to be applied to
the containing element, in this case, the section:

<section id="aaron-gustafson" class="vcard">

The next obvious one is “fn,” which should wrap my name.
As my name is already wrapped in an h1, we can apply a
class of “fn” to that element to indicate the text contained
within the element is my name.

<h1 class="fn">Aaron Gustafson</h1>

Next, we can add a class of “url” to the “Easy! Designs” link,
denoting that it points to a website I control:

… <a class="url" rel="external" href="http://easy-
designs.net">Easy! Designs, …

Continuing down the list, we can apply “photo” to the image
of me, which is contained in a figure element. HTML5
introduced the figure element to contain a discrete chunk
of content—usually an image or graphic with an optional
caption (figcaption)—that can stand on its own or be
removed from a document without altering its meaning:

<figure>
 <img class="photo" src="i/aaron-gustafson.jpg"
 alt=""/>
</figure>

19. http://www.whatwg.org/specs/web-apps/current-work/
multipage/content-models.html#sectioning-content

PROGRESSIVE ENHANCEMENT WITH MARKUP

http://www.whatwg.org/specs/web-apps/current-work/multipage/content-models.html#sectioning-content

35

We need to add the two final classes, “org” and “role” to this
markup in the final paragraph of my bio, but the content
presents us with a bit of a conundrum as there are several
roles and organizations mentioned. Which one should we
use? Is it okay to include multiple organizations and roles?

There is nothing in the hCard spec that restricts an hCard
to a singular organization and role, but, in practice, few
microformats parsers will expose anything beyond the first
one encountered because address book software doesn’t
typically allow for multiple organizations and roles. For that
reason, we’ll simply add the classification to my primary
function: Group Manager of the Web Standards Project.

The “org” bit is easy because “Web Standards Project” is
already contained in an element. My role there, however, is
part of a larger text string and is not contained within its
own element. To apply the classification to my role only, we
have to make use of an element bereft of semantic meaning,
such as b:20

… He is <b class="role">Group Manager of the
Web
Standards Project (WaSP) …

Viewed all at once, you can see that the adjustments to
incorporate the hCard microformat are quite minimal:

<section id="aaron-gustafson" class="vcard">

 <figure>
 <img class="photo" src="/events/2011/html5-
 css3/i/aaron-gustafson.jpg" alt=""/>
 </figure>

20. What? b? Really? Why not span? Well, in HTML5, the b element
has been brought back for the explicit purpose of representing “a
span of text to be stylistically offset from the normal prose without
conveying any extra importance.” While you can certainly use the
span element, b is a more appropriate (and shorter) alternative.

ADAPTIVE WEB DESIGN

36

<h1 class="fn">Aaron Gustafson</h1>

<p>… Aaron and his wife, Kelly, own <a class="url"
 rel="external" href="http://easy-designs.
 net">Easy! Designs …</p>

<p>… He is <b class="role">Group Manager of
 the <a class="org" rel="external" href="http://
 webstandards.org">Web Standards Project
 (WaSP) …</p>

</section>

But these simple changes allow a microformats parser to put
together a profile of me quite easily.

Figure 2.3: Screen shots of the information exposed from this code
via Operator.

PROGRESSIVE ENHANCEMENT WITH MARKUP

37

What’s really interesting about microformats is that you can
use them however you like. The class names don’t need to
appear in any particular order (so long as they appear within an
appropriately-classified parent element) and they don’t require
that the content match the intended export format in any way.
And, as this example demonstrates, the hCard does not need to
be marked up like a rolodex card entry; instead, you are free to
sprinkle its component parts throughout your prose using the
appropriate class names to indicate each one.

Mark your calendars
With hCard covered, we can take a look at the hCalendar
event microformat mentioned earlier. Again, before we
look at the markup, let’s take a look at some of the more
important hCalendar classifications.

CLASS PURPOSE

vevent Signifies that an hCalendar event is being used.
(This should be the class of the root element
containing the hCalendar event information.)

dtstart Indicates the start date of the event

dtend Denotes the end date of the event

summary Identifies the name of the event

location States the location of the event

description Provides additional details about the event

Table 2.2: Important hCalender classifications

As the entire demo page is dedicated to the event, the class-
application process needs to begin further up the DOM tree.
I’ve decided to start at the content container (div#content),
to which I’ve assigned the root “vevent” class. While in

ADAPTIVE WEB DESIGN

38

the following example, the hCalendar content is contained
within article#details, applying the class to an ancestor
element in this manner gives us the flexibility to include more
hCalendar properties in the other articles as well:

<div id="content" class="vevent">

As I mentioned, the first article (article#details) contains
the bulk of the information about the event. Let’s take a
look at that markup before we review the application of the
hCalendar classes:

<article id="details">

 <header>

 <h1>Join us for HTML5 & CSS3</h1>

 <p>8–10 April 2011</p>

 <p>Gatlinburg, <abbr title="Tennessee">TN</
 abbr></p>

 </header>

 <figure>

 </figure>

 <section class="main">
 <!-- event overview -->
 </section>

</article><!-- / #details -->

Glancing over the markup, you’ve probably already figured
out where most of the hCalendar classifications should be
applied. Right off the bat, you have the name of the event or
“summary” in hCalendar parlance:

<h1>Join us for <b class="summary">HTML5 &
CSS3</h1>

PROGRESSIVE ENHANCEMENT WITH MARKUP

39

In terms of source order, the next piece we encounter is the
date range “8–10 April 2011.” Traditionally, we would have
used abbreviation elements (abbr) to mark up this data, but
HTML5 introduces a new element explicitly tasked with
indicating temporal information: the time element. One
problem: to supply a start and end date for the event, we need
to break the content up into two dates before wrapping each
in a time element.

Though it may seem odd at first, what makes the most sense
is wrapping the “8” in one time element and “10 April 2011”
in the other. We do that because the “8” is really implying “8
April 2011,” albeit in an abbreviated form (which is why abbr
made a lot of sense previously). The time element allows for
further clarification of dates using the datetime attribute,
which is how I’ve expressed the full starting date:

<p><time datetime="2011-04-08">8</
 time>–<time datetime="2011-04-10">10 April
 2011</time></p>

hCalendars only require a summary and a starting date, so we
only need to apply the “dtstart” classification to the first time
element for the microformat to be valid. But since we have an
end date, it makes sense to apply that one too:21

<p><time class="dtstart" datetime="2011-04-08">8</
 time>–<time class="dtend"
 datetime="2011-04-10">10 April 2011</time></p>

Continuing down the article, “location” is pretty obvious:
Gatlinburg, TN:

<p class="location">Gatlinburg, <abbr
 title="Tennessee">TN</abbr></p>

21. As of this writing, some microformat parsers have issues with the
newer HTML5 elements and attributes. For that reason, it may
make sense to duplicate the value of the datetime attribute into a
title on the time element or switch to using title on an abbr.

ADAPTIVE WEB DESIGN

40

The final piece of our hCalendar puzzle is the “description”
and the most obvious choice of content for that property is the
“main” section of the article:

<section class="main description">
 <!-- event overview -->
</section>

And that’s it. With the microformatted content in place, it’s
now quite simple for users to export the event directly to their
calendar.

Figure 2.4: Screen shots of the information exposed from this code
via Operator.

PROGRESSIVE ENHANCEMENT WITH MARKUP

41

Again, we’ve seen how microformats can directly enhance the
meaning of already meaningful markup in order to improve
the user experience. Picture perfect progressive enhancement!

IT’S THE FOUNDATION
While progressive enhancement is often discussed in terms
of CSS and JavaScript, it applies equally to the markup.
As we’ve seen in this chapter, every time we choose a
meaningful element, we make it easier for the page to do its
job by enhancing accessibility and increasing its visibility
to potential users through organic search. We’ve also seen
how both classification and identification can feed back into
HTML, helping it become an even more expressive language.
And, as is the case with microformats, we’ve even seen how
the names we choose have the capacity to enhance both the
semantics and usability of the content to which they are
applied.

Semantic markup is an invaluable step in the progressive
enhancement continuum; in concert with well written
content, it forms the foundation upon which the entire user
experience is built.

ADAPTIVE WEB DESIGN

“Design is the fundamental
soul of a human-made
creation that ends up
expressing itself in
successive outer layers of
the product or service.”

— STEVE JOBS

CHAPTER 3:
PROGRESSIVE
ENHANCEMENT
WITH CSS
With the possible exception of a few straggling websites still
limping along with their font elements and spacer GIFs,
design on the web is largely accomplished using Cascading
Style Sheets (CSS). Sure, there’s Flash, SVG, and canvas, but
if you are concerned about the availability and accessibility
of your content, you’re going to be using HTML to mark up
your content and CSS to style it.

As with HTML, CSS is designed to be fault tolerant. Browsers
ignore any syntax they don’t understand1, 2 and, by paying
attention to how the language has evolved over time, we can
easily embrace progressive enhancement by taking advantage
of this ignorance to craft layers of design based on a given
browser’s capabilities.

1. http://www.w3.org/TR/2009/CR-CSS2-20090908/syndata.
html#parsing-errors

2. http://www.w3.org/TR/2009/CR-CSS2-20090908/syndata.
html#unsupported-values

http://www.w3.org/TR/2009/CR-CSS2-20090908/syndata.html#parsing-errors
http://www.w3.org/TR/2009/CR-CSS2-20090908/syndata.html#unsupported-values

44

SOMETIMES AN ERROR CAN BE
A GOOD THING
This isn’t a CSS book, so I’m not going to walk you through
all of the options available to you in CSS. One thing I do want
to do, however, is give you an ever-so-brief recap of how CSS
works because I think it will provide you with invaluable
insight into how to construct progressive designs.

At its most fundamental, CSS is a series of human-readable
rule sets, each composed of a selector and declaration block
containing a set of property-value pairs (declarations) to be
applied to any element matched by the selector.

p {
 color: red;
 font-weight: bold;
}

The example above is about as basic as CSS gets. Anyone
who’s worked with CSS before (and probably even someone
who hasn’t) can look at it and quickly comprehend that
it selects paragraphs and makes their text bold and red.
Looking at this example through the lens of fault tolerance,
however, you’ll see things a little differently.

When parsing a CSS file to determine how to render a page, a
browser reads each rule set and examines it. If it encounters
something it doesn’t understand, it experiences something
we call a “parsing error.” Parsing errors are often the result
of malformed CSS syntax (e.g., the misspelling of a property
name or value, a missing colon or semicolon, etc.), but they
also result when perfectly valid CSS syntax is beyond the
parser’s comprehension.

Assuming all of our curly braces, colons, and semicolons are
in their proper places, the example we just saw contains five
points at which a parsing error could occur:

ADAPTIVE WEB DESIGN

45

1. the selector: p;

2. the first property name: color;

3. the value of the first property: “red”;

4. the second property name: font-weight; and

5. the value assigned to the second property: “bold.”

According to the specification, if a browser encounters this
rule set and doesn’t understand a part of it (i.e., it experiences a
parsing error), the browser must ignore the larger component of
the rule set in which the parsing error occurs.

So, for example, if the browser did not understand the CSS color
keyword “red,” it would ignore the declaration color: red, but
would still apply the remaining declarations. The same goes
for the font-weight keyword “bold.” If, however, the browser
was unable to understand the selector (p), it would ignore the
entire rule set, regardless of the browser’s ability to comprehend
the individual declarations it contained.

The reasoning behind this is simple: We don’t know what
the future of CSS may be, so it is imperative that a browser
ignore declarations and selectors it doesn’t know what to do
with. This facilitates advancement of the language (just as it
does for HTML) and it also makes it possible to progressively
enhance pages using CSS.

For properties, using parsing errors to your advantage is pretty
straightforward and it opens up some awesome possibilities.
Here’s a quick example using CSS3’s RGBa color scheme:

p {
 background-color: rgb(137, 224, 160);
 background-color: rgba(180, 246, 248, .43);
}

PROGRESSIVE ENHANCEMENT WITH CSS

46

A browser parsing this rule set would likely understand the
selector (after all, you can’t get much simpler than an element
selector), so it would move on to the first background-color
declaration. The background-color property has been a part of
CSS since version 1, so the browser should have no problem there
and would move on to the assigned value. Similarly, RGB-based
color values have also been a part of CSS since the beginning, so
the browser will understand that value. With the first declaration
passing muster with the parser, the browser would apply
background-color: rgb(137, 224, 160); to all paragraphs
and the parser would move on to the second declaration.

In the second declaration, background-color is redefined
with a new value (per the cascade). Obviously, as we discussed,
the browser understands the property, so it would move
on to the declared value, which uses RGBa. If the browser
understands RGBa, there’s no problem and the RGBa value is
assigned to the background-color property, overwriting
the original RGB value. If RGBa is not supported, however,
the browser experiences a parsing error and ignores the entire
declaration, leaving all paragraphs with an RGB value for
background-color.

In this example, browsers that comprehend RGBa values would
overwrite the background-color value following the rules
of the “cascade” (as in Cascading Style Sheets). I’ll go into the
cascade a bit more thoroughly later in the chapter, but here’s
a quick summary: the cascade dictates that, for equivalent
properties, the last one defined is the one rendered.

This is a pretty simple example of how we can use CSS’
fault-tolerant nature to deliver an enhanced experience
to more capable browsers. It doesn’t just work at the
declaration level either; you can apply this same technique
to hide entire rule sets from a particular browser by using a
more advanced selector:

ADAPTIVE WEB DESIGN

47

html[lang] p {
 /* A bunch of advanced stuff goes here */
}

Any browser encountering this rule set would parse it, starting
with the selector. If the browser understands attribute-based
selection (in this case targeting any paragraph that is a
descendant of an html element that has a language attribute),
it will continue parsing the rule set and apply the declarations
it understands. If, on the other hand, said browser does not
comprehend attribute selectors, it would experience a parsing
error and ignore the entire rule set.

Perhaps the most famous example of using this technique to
selectively deliver rules to one browser over another (more for
effect than practicality) is Egor Kloos’ CSS Zen Garden entry
titled “Gemination.”3

Figure 3.1: Gemination in IE6 (above) and IE7 (below).

3. http://www.csszengarden.com/062/

PROGRESSIVE ENHANCEMENT WITH CSS

48

In this proof-of-concept piece, Kloos created a basic layout aimed
at Internet Explorer (then in version 6) and employed a technique
dubbed MOSe (“Mozilla/Opera/Safari enhancement”)4 to offer
more advanced browsers a completely different experience.
Kloos used simple selectors for the basic layout and advanced
selectors for the enhanced styles. Here’s a snippet that
demonstrates his approach:

#intro {
 margin: 0;
 padding: 0;
 width: 660px;
 height: 80px;
 background: transparent url(introkop.gif)
 no-repeat right top;
}

/* ... */

body[id=css-zen-garden] #intro {
 position: absolute;
 top: 0;
 left: 0;
 float: none;
 margin: 0;
 width: 100%;
 height: 350px;
 background: none;
}

Following CSS cascade order, the browser parses the first rule
set first to render the #intro layout. A little later, the browser
parses the “enhanced” rule set for #intro. If the browser
understands attribute selectors, it will render a completely
different layout for #intro; if it doesn’t, it will ignore the new
rule set entirely.

4. Dave Shea, curator of the CSS Zen Garden, coined the term back in
2003, but when Internet Explorer 7 came out, the term fell out of
use because it didn’t have the same selector-based limitations as
IE6. You can read his original post at http://www.mezzoblue.com/
archives/2003/06/25/mose/

ADAPTIVE WEB DESIGN

http://www.mezzoblue.com/archives/2003/06/25/mose/
http://www.mezzoblue.com/archives/2003/06/25/mose/

49

Selector-based screening can be a useful technique, but
it tends to trip up many CSS authors who don’t realize
selector failure in a compound selector (two or more selector
statements, separated by commas) is complete and not
discrete:

p,
p:not([title]) {
 color: red;
 font-style: bold;
}

This example has the same five locations for potential parsing
errors as the example that opened this chapter, but it also has
a sixth one in the second selector (p:not([title])). Browsers
that understand only one of these two selectors will ignore the
entire rule set rather than just the advanced selector (which,
in case you were wondering, looks for paragraphs without
title attributes).

Though it may seem unintuitive, the CSS 2.1 spec very clearly
states that this is how it should be: “The whole statement
should be ignored if there is an error anywhere in the selector,
even though the rest of the selector may look reasonable.”5
Knowing this, we can make better decisions about how and
when to combine selectors. As a general rule, it’s best to
avoid combining advanced selectors with simple ones (as in
the example) unless you want to hide the whole rule set from
older browsers.

We’ll come back to this technique momentarily, but first let’s
take a quick detour through the world of specificity.

Specificity is another core concept in CSS. It is a measure of
how many elements a given selector can select and is the
only mechanism available for overruling the cascade (more

5. http://www.w3.org/TR/2009/CR-CSS2-20090908/syndata.
html#rule-sets

PROGRESSIVE ENHANCEMENT WITH CSS

http://www.w3.org/TR/2009/CR-CSS2-20090908/syndata.html#rule-sets

50

on that in a second). Some selectors are more specific than
other selectors. For example, an id selector (e.g., #intro) is 10
times more specific than a class selector (e.g., .vcard), which
is, in turn, 10 times more specific than an element selector
(e.g., p).6

The specificity of a given selector is calculated by adding the
specificity of all of its component parts. Rules applied via very
specific selectors will trump those applied with less specific
selectors, regardless of their order in the cascade. Looking
back at Egor’s attribute selection sleight-of-hand, it’s worth
noting that even if the first rule set in the example came
second in the CSS file, the browser would still prioritize it
lower than the other rule set because its selector has a lower
specificity value than that of the second rule set.

Specificity of selectors is something that takes time to
master and can cause any number of headaches because
if you apply all of your styles with heavy-handed selectors
(e.g., each one contains an id selector), you end up having
to create even more specific selectors to overrule them (e.g.,
two id selectors). To avoid an ever-escalating arms race
of specificity, I recommend that you avoid making your
selectors unnecessarily specific.

Let’s revisit Kloos’ handiwork and apply what we learned
regarding parsing errors in compound selectors; in doing so,
we can reduce the specificity of Egor’s advanced rule sets and
still maintain the spirit of his original work:

#intro {
 /* Old Layout */
}

/* ... */

6. If you don’t quite grasp how specificity is calculated, be sure to
check out Andy Clarke’s “CSS Specificity Wars” http://www.
stuffandnonsense.co.uk/archives/css_specificity_wars.
html.

ADAPTIVE WEB DESIGN

http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html
http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html
http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html

51

[foo], #intro {
 /* Advanced Layout */
}

In this revision, I changed the second rule set into a
compound selector targeting an element with an attribute
named “foo” and another element with an id of “intro.” The
trick to this approach is that the initial attribute selector is a
red herring. The foo attribute is not only non-standard, but
it is not used anywhere in the CSS Zen Garden HTML, so the
addition of that selector to the rule set does nothing but hide
the rule set from browsers that don’t understand attribute
selectors. And, most importantly, it leaves the #intro
selector unadulterated, keeping its specificity equal to that
of the previous rule, allowing the cascade to determine style
application.

While this may not always be the technique you immediately
reach for when implementing CSS, it’s a good one to remember
when you want to use rule set filtering without altering a
selector’s specificity. From a maintainability standpoint, this
method is not ideal for more than a single rule set here and
there; to apply the concept of rule set filtering en masse, there
are better options available, and we’ll get to those shortly.

CONCERNS, SEPARATED
The “cascade” is a critically important concept in CSS; in fact
it’s the first word in CSS. Literally. Again, it’s beyond the scope
of this little book to go through the concept of the cascade in
any detail, but there is one facet that can help you become a
progressive enhancement expert in no time: order.

Order matters. A lot.

In CSS, when all else is equal (i.e., specificity), the proximity
of a style declaration to its target element determines the

PROGRESSIVE ENHANCEMENT WITH CSS

52

outcome. We saw this in our earlier example with the two
background-color assignments and the same holds true
with independent rule sets.

h1 {
 font-size: 2em;
}

h1 {
 font-size: 3em;
}

In this case, h1 elements will be assigned a font-size value
of 3em. While it’s unlikely you’ll see the same selector used
in two consecutive rule sets like this, it’s not uncommon to
see something similar. Take, for example, the images in the
“Lodging” article on the Retreats 4 Geeks site:

Figure 3.2: The Lodging article.

ADAPTIVE WEB DESIGN

53

The underlying markup for this article is as follows:

<article id=”lodging”>

 <header>
 <h1>Where You’ll Stay</h1>
 </header>

 <figure class=”frame focal”>
 <img class=”inner” src=”i/lodge.jpg”
 alt=”” title=”...”/>
 </figure>

 <section class=”main”>
 <!-- description of accommodations -->
 </section>

 <aside class=”extra”>
 <ul class=”gallery”>

 <figure class=”frame”>
 <img class=”inner” src=”i/room.jpg”
 alt=”” title=”...”/>
 </figure>

 <!-- ... -->

 </aside>

</article>

You’ll notice that the article in question uses the same
class for each figure element: “frame”; this allows us to
achieve consistency with regard to the postcard-with-matte
look. I’ve given the focal figure an additional class of, well,
“focal.” This setup allows me to use two different CSS rules
of equal specificity to apply the appropriate styles to figure.
focal. Here’s an example of one such application, followed
by an override:

PROGRESSIVE ENHANCEMENT WITH CSS

54

.frame {
 margin: 0 auto 40px;
}

.focal {
 margin: 0 20px 25px 30px;
}

Each of these rule sets applies to the focal figure in this
article (and all others on the page) and both rule sets have
selectors of equal specificity. Since the second rule set defines
the same property as the first, the margin value of the “focal”
figure will be “0 20px 25px 30px” instead of “0 auto 40px.”

Of course, most stylesheets are composed of hundreds of
rule sets, making it easy to unintentionally fall victim to
issues of proximity. Thankfully, however, we can alleviate
some of those issues by taking a layered approach to
designing with CSS.

Taking a step back for a moment, you can see the design of
a website contains three core facets: Typography, color, and
layout. Each brings something more to the table, building the
design until it is fully realized. When it comes to progressive
enhancement with CSS, we can use that same breakdown to
create discrete levels of support that are delivered based on
the capabilities of the browser: typography; typography and
color; and typography, color, and layout.

As we’ve discussed, rule order matters, so when building a
progressive design, we must reconcile our desire to separate
the facets of our design with the way the cascade prescribes
the interpretation of our rules. In practical terms, that means
delivering your groups of facet-specific declarations in a set
order: typography, then layout, then color. Why that order?
We’ll get to that in a moment.

ADAPTIVE WEB DESIGN

55

You can deliver these rule groups as separate stylesheets
(either linked or imported) or in a single one.7 The multiple
stylesheet route is pretty straightforward and easy to manage,
but it costs you in performance because each stylesheet must
be obtained in a separate HTTP request. Beyond that, some
browsers don’t cache stylesheets more than one level down
(e.g., a stylesheet imported into another stylesheet). For these
reasons, the single stylesheet approach makes the most sense
to me and is the one I’ve implemented on the Retreats 4
Geeks site.

To illustrate the concept of layering styles, perhaps it’s best to
start at the beginning: with no style applied. On the following
page, Figure 3.3 shows the lodging article in Safari with only
the default browser styles applied.

As you can see, the content is completely usable with the
browser’s default styles. It’s not nearly as attractive as we’d
like, but the content is entirely accessible. Applying a layer of
general typographic styles, we end up with Figure 3.4.

7. Just because your CSS is delivered in one stylesheet doesn’t mean it
needs to be maintained that way. There are numerous server-side
tools for combining CSS files into a single one, so you could easily
have the best of both worlds by physically importing the separate
stylesheets into the slots in a single skeleton CSS file before
delivering it to your users. For an example: http://www.easy-
reader.net/archives/2010/07/11/template-based-asset-
munging-in-expressionengine.

PROGRESSIVE ENHANCEMENT WITH CSS

56

Figure 3.3: “Lodging” sans CSS.

Figure 3.4: “Lodging” with typographic styles.

ADAPTIVE WEB DESIGN

57

The improvement is minor, but it is an improvement.
And for browsers that have issues with CSS-based layouts,
this may actually serve your users better than trying to
force them into a more advanced layout than their browser
can handle.

The next layer of style support to offer—and one that’s
probably available to users alongside basic typography—
is color (which, in some cases, may include background
images). Figure 3.5 shows the minor changes color brings
to the design of this article.

Clearly, we’re looking at incremental improvements here, but
improvements nonetheless.

The final layer of style application we’ll concern ourselves with
right now is the screen-based layout. Figure 3.2, from earlier in
the chapter, shows the “Lodging” article in all of its glory.

Figure 3.5: “Lodging,” colorized.

PROGRESSIVE ENHANCEMENT WITH CSS

58

You may recall that I mentioned I’ve chosen to define all of these
layers in a single file. To accomplish that, I broke the file down
into three distinct sections as seen in this excerpt highlighting
the styles applied to the images of the “Lodging” article:

/* =Typography */
img {
 display:block;
}

/* =Layout */
@media screen {
 .frame .inner {
 border: 10px solid;
 }
}

/* =Color */
.frame .inner {
 background-color: rgb(227, 222, 215);
 border-color: rgb(227, 222, 215);
}

You were probably quick to notice the @media block that
contains layout rules for the screen. The use of @media here
is not accidental: it ensures that every medium is given access
to the typography and color rules while the layout rules are
restricted to user agents that implement the “screen” media
type. Following this setup, you can easily do the same for
print or any other medium, but more on that in a bit.

The use of @media has another benefit as well: really
old browsers (e.g., Netscape 4) don’t understand it. And,
following the rules of fault tolerance, browsers ignore
anything they don’t understand, so our layout styles remain
cleverly hidden from older browsers and devices, leaving
them with a purely typographic or, as is more likely, a
colorful typographic experience.

ADAPTIVE WEB DESIGN

59

Now, getting back to an earlier question, why are the color
rules last? Well, my reasoning is simple: I like CSS shorthand.
CSS shorthand allows us to combine multiple declarations
into a single one. We saw an example of CSS shorthand earlier:
border: 10px solid. This declaration is shorthand for:

border-top: 10px solid;
border-right: 10px solid;
border-bottom: 10px solid;
border-left: 10px solid;

Incidentally, each of those declarations is also shorthand. For
example, border-top: 10px solid is shorthand for:

border-top-width: 10px;
border-top-style: solid;
border-top-color: inherit;

As you can see, CSS shorthand greatly reduces the complexity
of your stylesheets.

Glancing back at the previous example, imagine that the color
rule set had been moved before the layout one. The border-
color would be set to a light gray. Then, in the layout rules,
the border shorthand is used, overwriting the border-
color declaration from the earlier rule. It does this because
the specificity of the rule sets is identical and the border
shorthand always sets the border-color, even if you don’t
explicitly define it (“inherit” is the default value, meaning it
uses the text color). That’s why I recommend defining color
rules last. Shorthand can be really useful for simplifying and
compressing your stylesheets, but you need to be aware of the
order in which you apply them.

Since we’re on the topic of color, I’ll also mention that in certain
cases, you may want to use color in a layout-specific context
(e.g., a background color). In those instances, it may make
sense to block out a subsection of your rules using @media,
just as we did with the overall layout:

PROGRESSIVE ENHANCEMENT WITH CSS

60

/* =Color */
.frame .inner {
 /* colors for every medium */
}

@media screen {
 .frame .inner {
 /* screen-only colors */
 }
}

With our faceted framework in place, it becomes quite
simple to introduce additional modules as the need arises.
For example, effects:

/* =Color */
a:link, a:visited {
 color: rgb(180, 49, 25);
}

a:hover {
 color: rgb(235, 123, 35);
}
/* ... */

/* =Effects */
@media screen {
 a {
 transition-duration: .5s;
 }
}

Now that you have a pretty solid understanding of how to
wield CSS’s inherent fault tolerance for the betterment of the
browsing experience, let’s delve a little deeper and layer on
some additional enhancements.

ADAPTIVE WEB DESIGN

61

A LITTLE MISUNDERSTANDING
GOES A LONG WAY
As a fault-tolerant language, CSS is a near perfect addition to
the progressive enhancement toolbox. In many ways, ignorance
is bliss because we can reliably use new features and syntax
without having to worry about the browser falling apart when
it doesn’t understand something. But what if a browser thinks
it understands something, but its understanding is horribly
flawed? Yes, of course, I’m speaking of Internet Explorer.

IE9 was released as this book was in production. Based on
what I’ve seen so far, it looks like the team has made good
on their promise to support standards (including CSS) in a
completely interoperable way. IE8 was no slouch in the CSS
department, but when you start looking back at IE7 and
(shudder) IE6, things take a turn for the worse.

Thankfully, the smart folks at Microsoft gave us a tool that
makes it easy to sequester browser-specific patches to CSS,
JavaScript, and even markup: Conditional Comments.8
Conditional Comments are exactly what you’d expect: a
specifically-formatted HTML comment that is interpreted by IE
but is ignored by all other browsers (because it’s a comment).

Conditional Comments are a boon for the progressive
enhancement world because, while progressive
enhancement isn’t really about the browser, in practical
application, some browsers need a little hand-holding to
meet the needs of our users. Conditional Comments give us
authors the ability to target a specific version (or versions) of
IE. Here’s a quick example of how to put them to use:

8. http://msdn.microsoft.com/en-us/library/
ms537512(VS.85).aspx

PROGRESSIVE ENHANCEMENT WITH CSS

http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx

62

<link rel=”stylesheet” href=”c/main.css”/>
<!--[if IE 9]><link rel=”stylesheet”
 href=”c/ie9.css”/><![endif]-->
<!--[if lte IE 8]><link rel=”stylesheet”
 href=”c/ie8.css”/><![endif]-->
<!--[if lte IE 7]><link rel=”stylesheet”
 href=”c/ie7.css”/><![endif]-->
<!--[if lte IE 6]><link rel=”stylesheet”
 href=”c/ie6.css”/><![endif]-->

In this particular snippet, you can see that we are including
our core CSS file (main.css) on the first line. After that, we
have a conditionally-commented stylesheet directed at IE9,
using the syntax if IE 9. Skip that one for a moment and
focus on the following three lines, the first of which targets
IE8 and below (if lte IE 8 {meaning “if less than or equal
to IE8”}), the second of which targets IE7 and below (if lte
IE 7), and the final line which targets IE6 and below. Used in
concert and in this specific order, these three conditionally-
commented stylesheets streamline the CSS patching process
by allowing the patches you applied to more recent versions of
IE to trickle down to earlier versions. The reasoning? Well, if
an issue exists in IE7, it’s pretty likely that IE6 had the same
problem.

The conditional comment for IE9, by contrast, only targets
that specific browser. It could easily be set up in the same
“less than or equal to” manner as the subsequent conditional
comments, but IE9 is a substantial departure from IE8 on
many levels, including its CSS support. Any issues it has are
not likely to be issues with those earlier browsers, so there’s
no need to make those older browsers read and parse the
additional rules. The same setup could have been done for
IE8 as well, as the mechanisms that define its CSS support
are completely different than those in IE7 and it shares few,
if any, issues with IE7 and earlier, but as the design requires
that we use some IE-specific filters, it made sense to only
have to write them once.

ADAPTIVE WEB DESIGN

63

BEYOND THE BASICS
The web is unlike any other medium we’ve encountered thus
far. It isn’t print, television, radio, a video game, a kiosk, or
an application, but it functions as a hybrid of all of these
things and more. Realizing this, the W3C added the ability
to target styles to a specific medium. We took advantage of
that capability earlier in an @media block, but you’re probably
more familiar with using media declarations with linked or
embedded stylesheets (using the media attribute) or, possibly,
as a suffix to @import statements.

The W3C maintains the list of approved media types, but
is open to adding to it as technology evolves. Currently, the
list addresses CSS’ application on the computer screen, in
print, on televisions, on hand held devices, and in assistant
contexts such as screen readers, braille printers, and touch
feedback devices. Without a specific media designation, the
browser assumes a media type of “screen.”

At their most basic, media assignments use a single media
designation, but as with selectors, multiple media assignments
can be combined using a comma (which acts as an implicit
“or”). In the following example, main.css would be applied for
both “print” and “screen” media types:

<link rel=”stylesheet” href=”main.css”
 media=”screen, print”/>

Media assignments are fault tolerant, though the application
of fault tolerance for media assignments is quite different
from what is applied to selectors (not that that’s confusing
at all): if unknown media types in a comma-separated series

PROGRESSIVE ENHANCEMENT WITH CSS

64

are encountered, they are simply ignored and the known media
types remain honored.9

Unfortunately, in the case of media declarations on @import,
IE versions prior to 8 spoil the party even when the media
type is one they understand. Yet another reason it’s best
to stick with @media, unless you specifically want to hide
certain rules from that browser:

@import ‘not-for-IE7-or-below.css’ screen;
@media screen, print, refrigerator {
 /* IE will get these rules */
}

Media assignments are incredibly powerful because they
allow us to create layouts that adapt to the medium in
which they are presented. One of the first applications of
this technique came from Eric Meyer in 2000, when he
showed us how to jettison “printer friendly” pages and use
a media-specific stylesheet to provide a printer-friendly
view of any web page.10 Two years later, he built on that
concept and showed us how we could use advanced CSS
(such as generated content) to progressively enhance that
same experience.11

Returning to our main stylesheet, we can add support for
alternate media within our faceted framework quite easily:

9. The CSS 2.1 spec (http://www.w3.org/TR/2009/CR-
CSS2-20090908/media.html#media-types) addresses this
explicitly in the case of @media and @import, but is oddly non-
prescriptive about the same behavior applying to linked and
embedded styles. Still, all modern browsers treat the HTML-based
media designations the same way.

10. http://meyerweb.com/eric/articles/webrev/200001.html

11. http://www.alistapart.com/articles/goingtoprint/

ADAPTIVE WEB DESIGN

65

/* =Typography */
/* typography for every medium */
@media screen {
 /* screen-only typography */
}
@media print {
 /* print-only typography */
}

/* =Layout */
/* layout for every medium */
@media screen {
 /* screen-only layout */
}
@media print {
 /* print-only layout */
}

/* =Color */
/* colors for every medium */
@media screen {
 /* screen-only colors */
}
@media print {
 /* print-only colors */
}

Or all of the styles for print could be bundled into a single
@media declaration at the bottom:

/* =Typography */
/* typography for every medium */
@media screen {
 /* screen-only typography */
}

/* =Layout */
/* layout for every medium */
@media screen {
 /* screen-only layout */
}

PROGRESSIVE ENHANCEMENT WITH CSS

66

/* =Color */
/* colors for every medium */
@media screen {
 /* screen-only colors */
}

/* =Print */
@media print {
 /* global print-only overrides */
}

In the case of print, it may make the most sense to have a
single @media declaration to handle everything, but with
other media, it may be advisable to break it up. Each project
is different, so you’ll want to play around and see what feels
right.

Not your father’s media declarations
A few years after the introduction of independent media
support, the W3C upped the ante even more and introduced
media queries. Media queries are like media designations on
steroids: they provide details about the user’s environment,
such as the width of the browser window or even its orientation
(as in portrait or landscape). Media queries are incredibly
powerful and allow you to really fine-tune your designs
for specific devices. As such, they are quickly becoming an
indispensable tool in progressive enhancement.

Using media queries (which can go wherever you’d place a
standard media designation), you can add a set of rules to a
page based on the capabilities of the user agent. Let’s take a
look at an example:

@media (min-width:1025px) {
 /* ... */
}

In this case, we designated a group of rule sets to be used
only if the browser width is 1025px or more.

ADAPTIVE WEB DESIGN

67

The CSS3 module that defines media queries reached the
Candidate Recommendation stage in the middle of 2009
and prescribes how to obtain browser dimensions as well as
numerous other aspects of the device it is running on, such as
its dimensions, orientation, color capabilities, resolution, and
the like. Not all of the properties are currently supported, but
enough are to make them worth considering.

Media queries build upon the standard media designation
syntax by introducing the “and” combinator and negation
using the “not” keyword. These additions give you a bit more
flexibility to target the screen medium where the browser is
over 1024px wide (screen and (min-width:1025px)), or
anything besides print (not print), but they do not add an
explicit “or,” so you can’t perform more complicated queries
like you can in an actual programming language (e.g., A and
B or B and C, but not A and C). You can, however, imply “or”
using a comma.

Here’s a rather exhaustive compound media query with an
explanation of what it does in the comment:

@media
 screen and (min-device-width:1024px) and
 (max-width:989px),
 screen and (max-device-width:480px),
 screen and (max-device-width:480px) and
 (orientation:landscape),
 screen and (min-device-width:481px) and
 (orientation:portrait) {
 /* Layout for narrower desktop browser window
 (below 990px) or
 iPhone running iOS 3 (or equivalent) or
 iPhone running iOS 4 (or equivalent) in
 “landscape” view or
 iPad (or equivalent) in “portrait” view */
}

PROGRESSIVE ENHANCEMENT WITH CSS

68

Revisiting our example stylesheet, I have used media queries
to progressively enhance the page by making a baseline layout
aimed at older browsers and tablets. I then adjust the layout
for wider desktop browsers and narrower smartphones:

/* =Basic Layout */
@media screen {
 /* ... */
}

/* =Full Layout */
@media screen and (min-width:1025px) {
 /* ... */
}

/* =Narrow Layout */
@media screen and (max-width:765px) {
 /* ... */
}

Figure 3.6 shows the alternate layouts available. In some
instances the changes from version to version are pretty
drastic (e.g., each has a different navigation treatment) while
others are more subtle (e.g., the postcard-based contact form
adjusts to accommodate a narrower screen). Without getting
caught up in the specific differences between these layouts,
the important thing to recognize is that media queries can
be used to create truly adaptive layouts using only CSS. For
more information on adaptive layouts, consult the “Further
Reading” section of Chapter 6.

ADAPTIVE WEB DESIGN

69

NARROW REGULAR/TABLET

@media screen and
 (max-width:765px) {
 /* ... */
}

@media screen {
 /* ... */
}

WIDE

@media screen and (min-width:1025px) {
 /* ... */
}

Figure 3.6: Alternate layouts with media queries.

PROGRESSIVE ENHANCEMENT WITH CSS

70

RICH IN LAYERS
As you can see, there are numerous ways we can use CSS
to progressively enhance our web pages. Some techniques,
such as taking advantage of parsing errors, are so simple
and commonplace that you’re probably using them right
now. Others, such as faceted style separation, may provide
a slightly different take on your current practices or may
be completely foreign to you. When used in combination,
however, these techniques weave together, layer upon layer,
to provide a tailored experience for every user, no matter
what her browser or device supports.

ADAPTIVE WEB DESIGN

“I don’t want to use a tool
unless I’m going to use
it really well. Doing any
of these things halfway
is worse than not at all.
People don’t want a
mediocre interaction.”

 — SETH GODIN

CHAPTER 4:
PROGRESSIVE
ENHANCEMENT
WITH JAVASCRIPT
On February 7th, 2011, shortly after Gawker Media launched
a unified redesign of their various blogs (Lifehacker, Gizmodo,
etc.), users visiting any of those sites were greeted by a blank
stare (see Figure 4.1). The new platform relied entirely on
JavaScript to load content into the page and an error in that
JavaScript code made any page request come up empty-
handed.1 That single error caused a lengthy “site outage” (I
use that term liberally because the servers were still working)
for every Gawker property and lost them countless page
views and ad impressions. And it could have been avoided,
had they designed their new platform using progressive
enhancement.

1. A brief mention of the outage is here: http://blogs.wsj.com/
digits/2011/02/07/gawker-outage-causing-twitter-stir/.
Jeremy Keith and Mike Isolani provided worthwhile commentary on
the JavaScript reliance of Gawker’s platform (http://adactio.com/
journal/4346/ and http://isolani.co.uk/blog/javascript/
BreakingTheWebWithHashBangs, respectively). I also weighed in
at http://easy-reader.net/archives/2011/02/09/you-cant-
rely-on-javascript/.

http://blogs.wsj.com/digits/2011/02/07/gawker-outage-causing-twitter-stir/
http://blogs.wsj.com/digits/2011/02/07/gawker-outage-causing-twitter-stir/
http://adactio.com/journal/4346/
http://adactio.com/journal/4346/

73

Nothing really makes a web page sing quite like JavaScript.
With it, you can create rich interactions, build dynamic
interfaces, and so on. Web developers realized this early
on. They jumped at the opportunity to wield this powerful
tool to build more engaging web pages, validate form data,
and more. For today’s JavaScript developers, it’s easy to
make something amazing and stick to the progressive
enhancement philosophy, but it wasn’t always that way.

Back in the mid-to-late ’90s, coding JavaScript was like
practicing a dark art. For every bit of spaghetti code we had
in our HTML, it was usually ten times worse in JavaScript
because the two dominant browsers at the time, Netscape
and Internet Explorer, each had their own implementation
of the language2 and they differed just enough to make the
really interesting stuff incredibly gnarly to write. For example,
finding the same element (e.g., #location) in the document
(technically the Document Object Model or DOM) required
two incredibly different syntaxes:

document.layers[‘location’]; // Netscape
document.all[‘location’]; // IE

2. The JavaScript language itself, designed by Brendan Eich, debuted
as a feature of Netscape 2 in late 1995. Microsoft developed its own
dialect of JavaScript (named “JScript,” for trademark reasons) and
released it in mid 1996 as part of Internet Explorer 3 (which was,
coincidentally, also the first browser to offer CSS support).

Figure 4.1: Lifehacker. Empty.

ADAPTIVE WEB DESIGN

74

This unfortunate reality required us to essentially write every
script twice, or at least fill it with “forks” (alternate paths for a
script to take, based on the browser) that came back to “fork”
us in the end.

As we discussed in Chapter 2, the late ’90s was a period
of great turmoil on the web: the browser wars. With each
new release, Netscape and Microsoft offered up new
goodies for developers to use, hoping to capture a greater
share of the browser market. This one-upmanship created
a lot of problems for developers; with the two competing
implementations of JavaScript, we spent so much time trying
to even out the discrepancies that we didn’t pay attention
to how the language functioned or learn the best way to
integrate it with HTML and CSS.

When the European Computer Manufacturers Association
(ECMA) International standardized JavaScript3 and the W3C
released its DOM spec, the shifting sands beneath our feet
were finally replaced with a solid foundation and we were
able to start figuring out better ways of doing things:

document.getElementById(‘location’); // Unified DOM

GETTING OUT OF THE WAY
One of the first lessons we learned when the dust settled was
that JavaScript was not a panacea for interaction on the web.
In fact, it wasn’t even all that reliable.

First off, even after the W3C standardized the DOM and
the browsers generally agreed to support web standards,
not everyone was reading from the same playbook; there

3. Netscape submitted JavaScript to ECMA International for
consideration as a standard in 1996. The standardized version of
Javascript became known as “ECMAScript,” but we generally use
JavaScript unless referring to a spec.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

75

were enough differences between implementations that it
was simply impossible to make any assumptions about the
availability of certain methods (such as the lynchpin DOM
traversal methods document.getElementById(), which
provides access to elements based on their id or document.
getElementsByTagName() which, you guessed it, finds
elements based on their name). Secondly, even if a browser did
have full JavaScript support, the user (or her IT administrator)
still had the final say over whether or not JavaScript was even
allowed to run.4

Over time, we realized that JavaScript support was not a given
and we began to re-factor our code, making it cleaner, more
maintainable, and more flexible to deal with the availability
(or absence) of JavaScript. Let’s examine the thinking during
that period to better understand how to use JavaScript
progressively.

Warning: From here on out, we’ll be diving into actual JavaScript
code. If you have not worked much with JavaScript before, have
no fear, I’ll do my best to explain what’s happening at every step
of the way so that you can follow along, even if the code reads like
Sanskrit to you.

100% reliance
Back in the early days of JavaScript, it was not uncommon to
write (or at least see) onclick event handlers (scripts executed

4. For IT administrators, however, the choice to disable Javascript
was fundamentally a security one, but for a long time users with
accessibility concerns were also encouraged to disable JavaScript.
Some users also disabled JavaScript to remove annoying ads
and popups. JavaScript is most easily disabled in the browser
preferences, but can also be blocked by firewalls or disabled at the
application level by IT administrators.

ADAPTIVE WEB DESIGN

76

when someone clicked an element on the page) adorning
otherwise useless links.5

<a href=”#” onclick=”newWin(‘http://easy-designs.
 net/’);”>Easy! Designs

With JavaScript enabled, this link calls a custom function
named newWin, passing it a value of “http://easy-designs.
net/.” That function, in turn, opens that URL in a new
window. Without JavaScript, however, the link wouldn’t
do anything because, as you’ll recall from our discussion
of identifiers in Chapter 2, the href points to an empty id.
What’s the point of a link that won’t work without JavaScript?

Which brings me to my first maxim for progressive
enhancement with JavaScript:

1. Make sure all content is accessible and all necessary tasks
can be completed without JavaScript turned on.

This link obviously violates that (as does the Gawker platform
I mentioned earlier), but so did the vast majority of JavaScript
in use on the web by the end of the ’90s. At that time, the web
was lousy with sites that required JavaScript and places where
it got in the way of users; in other words, where JavaScript
was obtrusive. Realizing this problem, web developers began
to push for “unobtrusive” JavaScript.

Note: I’m not advocating the use of popups or using JavaScript
to open new windows as they introduce a number of accessibility
and usability issues. I have, however, chosen this as an example
because it illustrates the evolution of our JavaScript code in a
manner that’s relatively easy to follow. Rest assured, the lessons

5. Variations of this old school technique included the javascript
pseudo-protocol (e.g., <a href=”javascript:myFuncti
on();”>) and, my personal favorite, the combined use of the
javascript pseudo-protocol and an inline event handler (e.g.,).

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

77

you’ll learn by following this example are universally applicable to
any other JavaScript-ing you might do.

Becoming unobtrusive
Unobtrusive JavaScript is a catch-all term for programming
in a manner that is not reliant on JavaScript. Under this
paradigm, users are given access to all page content and can
accomplish every necessary task on a page using the basic
building blocks of the web (HTML and the HTTP protocol).
JavaScript is then layered on to enhance the page.

Sound familiar? Unobtrusive JavaScript is an idea that meshes
perfectly with progressive enhancement philosophy because
it forces JavaScript into the role of functional enhancement, as
opposed to absolute requirement.

With unobtrusive JavaScript in mind, we re-factored our links
to work whether JavaScript was available or not:

<a href=”http://easy-designs.net/” onclick=”newWin
 (this.href); return false;”>Easy! Designs

In this revision, the link actually points to a URL so it will
function without JavaScript. When JavaScript is available,
however, clicking the link will call newWin, which is passed the
value of the link’s href attribute (the DOM value this.href).
The other key difference between this and the previous version
of the link is that the onclick event handler is also set to
“return false,” which cancels the click event’s default action (in
this case, following the link to a new page).

This was a great first step to address the potential absence
of JavaScript, but we soon realized there were better ways to
manage scenarios like this.

ADAPTIVE WEB DESIGN

78

More maintainable
The next step in the evolution of this code involved using
the age-old rel attribute (which you’ll recall from Chapter
2) to migrate our inline JavaScript code to an external file.
This provided two benefits: 1) it gave an additional semantic
meaning to the link and 2) it made maintaining websites
much easier because developers could change a single
JavaScript file and affect the entire site (which is the exact
argument we made for external stylesheets over inline use
of the style attribute). Here’s the new HTML:

 Easy! Designs

From there, it’s fairly simple to apply the click event to this
and any other “external” links:

var links = document.getElementsByTagName(‘a’),
 rel, i = links.length;
while (i--) {
 rel = links[i].getAttribute(‘rel’);
 if (rel && rel.match(/\bexternal\b/)) {
 links[i].onclick = function(){
 newWin(this.href);
 return false;
 };
 }
}

If all those “ifs” and “whiles” are Greek to you, here’s a
quick summary of what the script does: it collects all of the
links on the page and loops through them (in reverse order
which, oddly enough, is a bit faster than going forward);
and if the link has a rel attribute and its value contains
the text “external,” the link’s onclick event is assigned an
anonymous function that calls a function named newWin
(passing it the value of the link’s href attribute just like in
the previous example) before canceling the click’s default
action by returning false.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

79

Finally, we’d come upon a decent solution that was just about
as unobtrusive as you could get and, in 2006, Jeremy Keith
gave us a lovely little name for it: Hijax, a clever combination
of “hijack,” referring to the fact that the link’s normal
behavior was being commandeered, and Ajax, the JavaScript-
based mechanism by which web pages could interact with a
server without requiring a refresh in the browser. Little did
we know, Ajax, which was just growing in popularity at the
time, would show us we still had a thing or two to learn when
it came to JavaScript event management.

Truly flexible
With the widespread acceptance and implementation of Ajax
techniques6 and other methods of modifying page content on
the fly, our age-old method of assigning event handlers wasn’t
holding up all that well. After all, if new content was injected
into the page with a link marked rel=”external”, it wouldn’t
have our custom function assigned as an onclick event
handler. This is because our script was likely run when the
page loaded (window.onload()) prior to the new link being
injected via Ajax.

This presented a tough problem to be sure. In this scenario,
it was possible that two links that should act the same
would actually act in completely different ways. Can you say
usability issue?

6. XMLHttpRequest is the technology that we use to make requests
to the server to send and receive information without requiring
the browser to refresh or reload the page. It was invented at
Microsoft for Outlook Web Access and debuted in IE5, but it
has been adopted by every other browser and is currently being
standardized at the W3C. XMLHttpRequest is the backbone of
Ajax (Asynchronous JavaScript and XML), but despite its namesake,
it can communicate by means other than XML. The “A” in Ajax
stands for “asynchronous” because this means of communication
doesn’t require the user to wait for the response; she can continue
interacting with the page while the script loads more information
from the server.

ADAPTIVE WEB DESIGN

80

To address this issue, some folks re-executed the script
whenever an Ajax-based HTML injection was completed.
It seemed like a good idea, but calling the same function
over and over again slowed the browser down considerably
because it had to traverse all of the links on the page each
and every time.

Then Christian Heilmann reminded us that any event
triggered on a particular element actually traverses the DOM
tree from the root node (html) to that element and back again
in the event capturing and bubbling phases, respectively.7
That means the “click” event on a link is actually executed
on every element between the root node and the link
itself… twice8 (see Figure 4.2). Listening for the event on an
element further up the DOM tree is not only more efficient
(because you could assign a single event handler rather
than hundreds), but it made it possible to trigger actions on
dynamic content, thereby helping us overcome the potential
usability issue where similar links behaved differently.

7. http://icant.co.uk/sandbox/eventdelegation/

8. Ok, not technically twice in every browser. The Microsoft event
model, the one implemented in all versions of IE prior to 9, only
supports the bubbling phase of an event. The standard W3C event
model supports both event capturing and event bubbling.

Figure 4.2: Event capturing and bubbling.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

81

This concept became known as “event delegation” because a
single event handler could interpret events and send out orders
based on the element that triggered that event. Here’s a concise
rewrite of the previous example that uses event delegation:

document.body.onclick = function(e) {
 // even out the event models
 e = (e) ? e : event;
 var el = e.target || e.srcElement, rel;
 // external links
 rel = el.getAttribute(‘rel’);
 if (el.nodeName.toLowerCase() == ‘a’ &&
 rel && rel.match(/\bexternal\b/)) {
 newWin(el.href);
 // cancel the default action
 if (e.preventDefault) {
 e.preventDefault();
 } else {
 e.returnValue = false;
 }
 }
};

This code block assigns an event handler to the onclick
event of the body element, establishing the listener; within
the listener, it determines the target element (the one that was
clicked) and then checks to make sure it’s an anchor element
(a) that has a rel attribute containing the string “external”;
if the element meets all of those requirements, the newWin
function is called and the event’s default action is canceled.

This example, while specific, demonstrates why we must
continue to evolve our approach to JavaScript-based
interactions. Improving our JavaScript comprehension provides
direct benefits for progressive enhancement by helping us
make our code smarter and more unobtrusive, but it also helps
us in terms of maintainability and performance.

ADAPTIVE WEB DESIGN

82

MAKING WHAT WE NEED
By now you’re probably getting the gist of unobtrusive
JavaScript, but we’ve only been looking at the user experience
from the document side of things. There are numerous ways
in which JavaScript-based interactions are far superior to those
without it. Client-side form validation, for instance, provides
the opportunity to give users immediate feedback on potential
errors without requiring that they submit the form first.

As we’ve seen, we need to be careful to make sure that every
interface can work without JavaScript, but what about when
JavaScript needs additional markup to achieve its goals?
Well, that brings us to my second maxim for progressive
enhancement with JavaScript:

2. Use JavaScript to generate any additional markup it needs.

JavaScript is really good at generating and modifying markup
on the fly. So when you need to enhance an interface with

Figure 4.3: Checking username availability on Twitter.com.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

83

JavaScript, start with a baseline of semantic, usable markup
and baseline styles. Then instruct the script to make necessary
HTML and CSS changes required by the new interface once it
has determined that it can run without encountering errors.

For an example of this in action, let’s return to the Retreats 4
Geeks page.

I wanted to make the best possible use of space on a mobile
device. The horizontal navigation will work on a small browser,
but the target areas would be too small to click easily. Of
course, I could switch the site to use vertical navigation,
allowing for larger links, but that would take up precious
screen real estate.

An alternative to these two approaches is creating a dropdown
using either CSS or a select element. While the pure CSS
dropdown option is tempting, the latter approach has an edge
because it provides users with a familiar user interface. For that
reason, I chose the select route.

Based on the markup introduced back in Chapter 2, I’ll walk
you through creating a script that converts the contents of the

Figure 4.4: The Retreats 4 Geeks web page.

ADAPTIVE WEB DESIGN

84

nav element into a select when the browser shrinks below
a particular size. To keep the example short and a little easier
to follow, I’ve used the jQuery JavaScript library.9 Libraries are
great tools as they are composed of dozens if not hundreds
of functions that solve common problems (like adding and
removing classes). Don’t worry if you can’t completely follow
the code, I’ll explain what’s happening so you don’t have to
decipher it on your own.

We’ll begin by isolating the script in an anonymous function10
that runs as soon as the DOM is available, but before assets
like images, CSS files, and videos have been downloaded
(a.k.a. onDOMReady). This makes the page more responsive
than running a script when the window loads (a.k.a. window.
onload). For the remainder of this example, all of the code will
be sequestered within this function:

$(function(){
 // Exciting stuff will go here
});

Next, we create the variables we need for this script to work.
By instantiating them all at once, we’ll reduce the number of
var statements (which helps with minification).11

var
$window = $(window), // reference the window
$old_nav = $(‘#top nav > *’), // get the navigation
$links = $old_nav.find(‘a’), // get the links
showing = ‘old’, // track what’s showing
trigger = 765, // the browser width
 // that triggers the change
$new_nav, $option, // we’ll use these shortly
timer = null; // we’ll need a timer too

9. http://jQuery.com

10. Anonymous functions are functions which have not been given
a name.

11. http://www.alistapart.com/articles/javascript-minification-
part-II/

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

85

The comments should give you a good sense of what each
variable is for.

If you’re familiar with jQuery, but confused as to why
we’re assigning elements to local variables rather than just
referencing the jQuery-based lookup (e.g., $(‘#top nav
> *’)) each time we need it, rest assured that there’s a
method to my madness: creating a local reference reduces
the performance hit of running the script because the look
up only happens once instead of every time $() is used.
Also, to make it easy to differentiate jQuery results from
other variables, I’ve prefaced each associated variable name
with a dollar sign ($). You’ll see these techniques used
throughout this script as they are helpful habits to get into.

With all of our variables in place, you might think we could
move on to the meat of the script, but we’re not quite ready for
that yet. Before we try to execute code against the page, we
should make sure that the elements we need actually exist:

if ($old_nav.length && $links.length) {
 // We know the DOM elements we need exist
 // and can do something with them
}

Testing for dependencies is very important and is something
I’ll cover more thoroughly in the next section. Now for the
meat (or nutmeat if you’re a vegetarian). We’ll begin our script
in earnest by generating the new select-based navigation,
creating the select, and the first of several option elements
it will contain:

$new_nav = $(‘<select></select>’);
$option = $(‘<option>-- Navigation --</option>’)
 .appendTo($new_nav);

With new markup to work with, we can now loop through
the links we collected (as $links) and build a new option for
each by repeatedly cloning the option we just created:

ADAPTIVE WEB DESIGN

86

$links.each(function(){
 var $a = $(this);
 $option.clone()
 .attr(‘value’, $a.attr(‘href’))
 .text($a.text())
 .appendTo($new_nav);
});

With the options created and appended to the select we
can move on to adding the final markup touches and setting
up the event handler for the select’s onchange event:

$new_nav = $new_nav
 .wrap(‘<div id=”mobile-nav”/>’)
 .parent()
 .delegate(‘select’, ‘change’, function(){
 window.location = $(this).val();
 });

This is a slightly simplified version of what you’ll find on the
live Retreats 4 Geeks site (I’ve taken out some of the URL hash
trickery), but I wanted to make sure you were able to follow it
without distraction. Here’s what’s going on: the first three lines
wrap our select ($new_nav) in a div and then re-assign
that div to the variable $new_nav so the whole thing is
viewed by JavaScript as a neat little package; the next line uses
event delegation (which we discussed earlier) to observe the
onchange event on the select from further up the DOM tree
(from the div, in fact), assigning an anonymous function to
that event that pushes a new location to the browser’s address
bar (causing the browser to jump to the new section or load a
new page, depending on the link type).

Boom! Functional select-based navigation. Now to get it
into the page when conditions are right. For that, we’ll create
a new function, called toggleDisplay, that will observe
the size of the browser window and handle swapping one
navigation style for another:

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

87

function toggleDisplay() {
 var width = $window.width();
 if (showing == ‘old’ && width <= trigger) {
 $old_nav.replaceWith($new_nav);
 showing = ‘new’;
 } else if (showing == ‘new’ && width > trigger) {
 $new_nav.replaceWith($old_nav);
 showing = ‘old’;
 }
}

Again, this is a slightly simplified version of the final script, but
it highlights the important part: the navigation is only swapped
in the event that the appropriate browser width threshold
is met (trigger) and the other navigation style is showing
(tracked using showing). With that function in place, we just
need to run it once (to initialize everything and make sure the
right navigation is showing from the get-go) and then assign
it to the window’s onresize event:

toggleDisplay(); // initialize the right view
$window.resize(function(){
 if (timer) { clearTimeout(timer); }
 timer = setTimeout(toggleDisplay, 100);
});

If you’re wondering why toggleDisplay() isn’t passed
in as the actual event handler, that’s because doing
so would cause the function to be executed numerous
times (possibly several hundred) while a user is resizing
his or her browser. To keep the number of executions
to a minimum (and reduce the burden the script places
on a user’s CPU), the event handler uses a timer to call
toggleDisplay() after .1 seconds. As the function is
triggered repeatedly during a resize event, it destroys the
timer if it exists and then recreates it. This setup ensures
toggleDisplay() is only called once when a user resizes
his or her browser (unless he or she does so very slowly).

ADAPTIVE WEB DESIGN

88

And there you have it: a perfect example of progressive
enhancement with Javascript.

As this simple example demonstrates, JavaScript is
perfectly capable of generating everything it needs and
getting rid of anything it doesn’t. You could even take this
particular function a step farther and make it even more
markup agnostic by allowing the root starting point (in our
case, the child elements of nav) to be passed dynamically
into the function. But I leave that to you to experiment
with. Onward!

KEEP IT COPACETIC
As we’ve covered, many of the progressive enhancement
techniques available to us in HTML and CSS are pretty
straightforward and may even have been part of your
repertoire prior to picking up this book. Progressive
enhancement with JavaScript, on the other hand, is a bit
more complicated; JavaScript cannot be fault tolerant like
the others because it is a programming language.

Figure 4.5: select-based navigation on an iPhone.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

89

Unlike HTML and CSS, which describe content and provide
design instructions to a browser, respectively, JavaScript
literally executes commands to the browser. Because they
actually do something, JavaScript programs stop running when
they encounter an error. The potential causes for these errors
could be anything from a typo to a missing dependency to
accidentally writing an infinite loop. Regardless of the cause,
if you write code that doesn’t jive well with the browser’s
JavaScript interpreter, it will likely spit a big fat error right in
your face (or your customer’s). And no one wants that.

As we’ve seen, the implementation of progressive
enhancement at each stage in the continuum isn’t a binary
choice of having a particular technology or not having it.
Instead, a user’s experience at each level is variable based
on the capabilities of the browser. So, if a user’s browser
supports RGBa natively, but not rounded corners, it’s not a big
deal; the user gets what she gets.

We need to approach JavaScript the same way; it shouldn’t
be an all or nothing option. Not to keep returning to
food metaphors time and time again, but we should offer
technologies in an à la carte fashion by dividing up the
functionality into discrete, self-contained packages. Once
separated, these scripts can test for their own dependencies
and judge whether or not they should run based on the
browsing environment and the page they are to interact with.

The select-based navigation script we just walked through
is a good example of the first part of this concept in practice;
it is completely self-contained. It does not, however, properly
test for its numerous dependencies, the first of which is the
availability of jQuery. To do that, we would need to wrap the
whole thing in a conditional:

if (typeof(jQuery) != ‘undefined’) {
 // Existing code goes here
}

ADAPTIVE WEB DESIGN

90

In this brief bit of code, we are checking for the existence
of the jQuery object, which is created when jQuery (the
library) is present, by checking to see that its type is not
“undefined.” Dependency testing is a useful strategy
because it helps you avoid throwing errors in the browser
and it can help speed up the user’s browsing experience by
not executing code unnecessarily.

Here’s another simple example that may prove more familiar
to you:

if (document.getElementById) {
 // Code using document.getElementById() goes here
}

In this case, we’re making sure the DOM traversal method
document.getElementById exists before we execute
code that uses it. You probably recall us using this strategy
in the event delegation example when testing for event.
preventDefault.

Returning to the jQuery test, we can take the test a step farther
and check for a specific version of jQuery. This form of testing
can be useful if your script uses a method not available in
earlier versions of the library. In many cases, it’s smarter to test
for the existence of specific methods, but version checking can
be really helpful when a new release of the library substantially
changes the API for a pre-existing method:

if (typeof(jQuery) != ‘undefined’ &&
 parseFloat(jQuery.fn.jquery) >= 1.4) {
 /* Existing code that requires jQuery 1.4 or higher
 goes here */
}

Testing for dependencies is a great way to ensure you don’t
execute code that could throw errors and, the earlier you
test, the more memory and processing time you can save
a user who won’t benefit from the script in the first place.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

91

jQuery isn’t the only dependency the script has though;
as you may recall, we took its markup dependencies into
account when we tested the lengths of both the $old_nav
and $links collections:

if ($old_nav.length && $links.length) {

With this test in place, the script quietly exits when it has
nothing to do and it doesn’t bother creating any new elements
or assigning any event handlers that are destined to go unused.

Following on this example, you can likely see myriad
scenarios where investigation into the browsing environment
and the page setup can help a script to determine whether or
not it should run. Object existence, markup dependencies,
method availability, cookie availability, and Ajax support are
all ripe for the plucking. It’s trivial to add code that allows a
script to quietly turn itself off when any of its dependencies
are not available, so there’s really no reason not to do it.

If you think about it, the concept of dependency testing is
quite similar to using media queries in CSS. And, speaking of
CSS, we should talk about how to best manage the interaction
between scripts and style.

WORKING WITH STYLE
One script dependency we haven’t discussed yet is CSS. Nine
times out of ten, if you are writing JavaScript that interacts
with the DOM, you’re also working with CSS in one way or
another. When developing with progressive enhancement in
mind, it’s important to determine the best way to apply and
control styles from within JavaScript so you don’t confuse
your users by creating interfaces that don’t actually work. But
more on that in a moment.

Over the years, our understanding of how JavaScript and CSS
should interact has evolved considerably. In the early days

ADAPTIVE WEB DESIGN

92

of JavaScript, style management in a script was pretty much
nonexistent; we just wrote everything inline by manipulating
an element’s style attribute:

function highlight() {
 var el = document.getElementById(‘message’);
 el.style.color = ‘#f00’;
 el.style.backgroundColor = ‘#ffcfcf’;
}

From a maintenance perspective, code written in this manner
is a nightmare to work with. It means any time there’s a
design change, you need to get someone who understands
JavaScript involved. That’s hardly efficient and violates the
separation of layers; mixing presentation and behavior makes
both of them harder to work with.

The next step in the evolution was extracting the changeable
bits to variables, either within the script itself or passing them
in as part of a configuration object (keeping a sensible default
in case the configuration was skipped):

function highlight(config) {
 var el = document.getElementById(‘message’);
 el.style.color = config.color || ‘#f00’;
 el.style.backgroundColor = config.backgroundColor
 || ‘#ffcfcf’;
}

highlight({
 color: ‘#ebebeb’,
 backgroundColor: ‘black’
});

It still requires at least a cursory knowledge of JavaScript to
update the strings, but hopefully all of the style rules would
be in one place, so the maintenance should be a bit easier.

Eventually, however, we realized it was much more efficient
to maintain style information in an external stylesheet and
trigger it by manipulating the class of an element on the page:

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

93

function highlight() {
 document.getElementById(‘message’)
 .className += ‘ highlight’;
}

Not only did this reduce the amount of code necessary to
accomplish the desired effect, but it also meant fewer DOM
manipulations (which increased performance tremendously)
and it meant the CSS could be maintained without modifying
the JavaScript that would be interacting with those styles.

I’m going to forgo a discussion of the different ways you
can bundle your scripts and styles together while still
maintaining a decent amount of separation, in favor of
spending some time on when and how to best apply styles
using a script. While the former is certainly an interesting
topic,12 the route you choose to go has more to do with your
work flow and overall project needs. When and how your
scripts apply styles, however, is of critical importance and
is the subject of my final maxim for progressive
enhancement with JavaScript:

3. Apply no style before its time.

As we’ve already covered, most DOM scripting requires a
bit of style modification as well—whether it’s to expand
and collapse an element on the page, highlight newly added
content, or provide visual flourishes to a drag and drop
interface. Using style in this manner is perfectly legitimate,
but, more often than not, developers apply styles that
correspond to a given widget before they have determined
if the widget can even run.

Let’s take, for example, an accordion widget. In a typical
accordion interface, the content blocks are hidden and only

12. For an overview of that topic, you can read my article “Keeping the
hot side hot and the cold side cold” in Scroll Magazine: http://
scrollmagazine.com/number-1/keeping-the-hot-side-hot.

ADAPTIVE WEB DESIGN

94

the associated headings are visible. If the styles applied to
hide the content sections were applied by default and the
script was unable to run, a user would be unable to click a
header to reveal the hidden content. The styles would have
undermined the usefulness of the interface because they were
applied too early.

If, on the other hand, the script itself were to trigger the
application of the initial state styles when it knew it would
be able to run, there would not be any problem whatsoever.
If the script didn’t run, the widget-related styles would
not be applied and the content would still be visible and,
thereby, usable. Implementing the style application in this
way, you provide one layout for the content when the widget
can’t run and another set of styles when it can, optimizing
both use cases.

Could it be? Why yes, I think it is. Progressive
enhancement perfection.

Figure 4.6: An accordion widget showing the first section expanded and
the other three sections collapsed. Clicking the title of another section
will cause that section to expand and the first section to collapse.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

95

One of the best ways to manage triggering interface styles like
this is by using an “activator” class on the root element of
the widget. Here are some quick examples:

STRATEGY “RESTING”
CLASS

“ACTIVATED”
CLASS

Add a suffix of “-on”
to the base class

.accordion .accordion-on

Add another class .auto-submit .auto-submit.active

Change the form of
the class

.replace-me .replaced

Table 4.1: Using an “activator“ class.

By following this practice, you can guarantee that no styles
will be applied before they are needed.

Another issue with style application by JavaScript is the
potential for collisions. Just as it is important to isolate
your scripts from one another to avoid collisions in variable,
function, or method naming, it is recommended that you
isolate your script-related styles from others as well. After
all, you may not be able to control what other class names
may be in use on a given page (especially if you’re releasing
a script for other people to use) and if you don’t carefully
sequester your styles, they can unintentionally “bleed” onto
the rest of the page (i.e., they might be applied to elements
you didn’t intend them to apply to).

To corral your styles, it’s best to start every selector with an
identifiable marker unlikely to be in conflict with another
class or id on the page. I like to begin with the name of
the JavaScript object. So, for example, if I built an accordion
widget named (cleverly) AccordionWidget, I might classify

ADAPTIVE WEB DESIGN

96

the activated root element as “AccordionWidget-on” and then
tree each of my styles from there:

.AccordionWidget-on .heading {
 /* Heading styles here */
}

.AccordionWidget-on .content-block {
 /* Content block styles here */
}

.AccordionWidget-on .content-block.collapsed {
 /* Collapsed content block styles here */
}

Obviously, there is an outside chance that style rules intended
for content other than your widget could end up bleeding into
the widget as well because of issues regarding specificity or the
cascade. If you anticipate those potential issues, however, you
can take the appropriate action by increasing the specificity of
your selectors or by explicitly setting each and every property
you want to control within your widget.

PLANNING AND RESTRAINT
Make no mistake, progressive enhancement with JavaScript
requires considerably more effort than it does with CSS or
HTML. With a bit of thoughtful reflection and consideration
of the numerous factors that affect the web experience,
however, it quickly becomes second nature. And, when in
doubt, you can always come back to the three maxims:

1. Make sure all content is accessible and all necessary tasks can be
completed without JavaScript turned on.

2. Use JavaScript to generate any additional markup it needs.

3. Apply no style before its time.

Armed with a solid understanding of how to best wield the
power of JavaScript, you’re sure to make smart decisions and
build even more usable sites.

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

“It takes many good deeds
to build a good reputation,
and only one bad one to
lose it.”

— BENJAMIN FRANKLIN

CHAPTER 5:
PROGRESSIVE
ENHANCEMENT FOR
ACCESSIBILITY
In February of 2006, the National Federation of the Blind took
legal action against Target for having an inaccessible website. A
month later the case went to federal court (at Target’s request).
Target tried to get the case thrown out, but it didn’t fly and the
case turned into a class action lawsuit that Target eventually
settled in 2008 for over $6 million US (not counting attorney
fees). That’s pretty substantial considering that the reason the
lawsuit was filed in the first place was because Target didn’t
fix accessibility issues they were alerted to: lack of alt text on
images, heavy use of image maps, and reliance on a mouse for
the submission of forms. All of these issues could have been
addressed quickly and easily for far less than $6 million. Hell,
I’d have done it for a few grand.

If you haven’t had a lot of exposure to accessibility—with
respect to this chapter, a measure of how well a site can be

99

used by people with disabilities and the assistive technologies1
they rely on—as a design consideration, it can seem incredibly
daunting because there are so many factors to consider. Even if
you fall into a category of users with “special needs,” it’s likely
your experience and aptitudes are different from someone
else with similar concerns. For example, you may have
deuteranopia (a type of red-green color blindness), but yours
may not be as extreme as someone else’s. You also may not be
as likely to recognize potential issues for people with tritanopia
(blue-yellow color blindness).

If you’re the kind of person who is concerned with issues
of accessibility, whether from the position of getting your
message to as many people as possible or because you don’t
want to make someone feel left out, the self-imposed pressure
to “get it right” can seem so intense that you can’t help but
approach it with trepidation.

Thankfully, designing and developing with progressive
enhancement improves accessibility. Progressive enhancement
encourages you to build your websites in service of the content
and that, more often than not, will help guide you toward the
right decision when it comes to accessibility. Of course there’s
always room for improvement, hence this chapter.

NOW YOU SEE ME…
Perhaps the most heavily-repeated pattern in JavaScript-
based page manipulation is showing and hiding content.
Tabbed interfaces. Collapsible elements. Accordion widgets.
It crops up nearly everywhere. In and of itself, this pattern is
not a bad thing, but few people realize how profoundly your

1. Assistive technologies come in many forms. Blind people who use
screen-reading software. People with partially impaired vision may
enlarge text in the browser. The deaf often rely on captioning to
easily follow videos.

ADAPTIVE WEB DESIGN

100

choice of hiding mechanism can influence the accessibility
of your content to assistive technologies like screen readers.

When it comes to hiding content, there are several
mechanisms for doing it and each has a different affect on
the page, as summarized in the table below.

CSS RULES DISPLAY EFFECT ACCESSIBILITY
EFFECT

visibility: hidden; Element is hidden from
view, but is not removed
from the normal flow
(i.e., it still takes up
the space it normally
would)

Content is ignored
by screen readers

display: none; Element is removed
from the normal flow
and hidden; the space it
occupied is collapsed

Content is ignored
by screen readers

height: 0; width:
0; overflow:
hidden;

Element is collapsed
and contents are hidden

Content is ignored
by screen readers

text-indent:
-999em;

Contents are shifted
off-screen and hidden
from view, but links
may “focus” oddly and
negative indent may
not prove long enough to
fully hide content

Screen readers
have access to the
content, but the
content is limited
to text and inline
elements

position:
absolute; left:
-999em;

Content is removed from
the normal flow and
shifted off the left-hand
edge; the space it
occupied is collapsed

Screen readers
have access to
the content

Table 5.1: Mechanisms for hiding content.

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

101

The first two mechanisms are probably the most popular,
with display: none; being the go-to option implemented
by nearly every JavaScript library on the planet and the lion’s
share of ready-made JavaScript widgets. If you don’t want your
hidden content to be read by a screen reader, those defaults
may work for you, but if you want to ensure users have access
to content (even if it isn’t displayed visually in the current
interface), the final option is really the way to go.

If you roll your own JavaScript library, positioning content
off-screen to hide it is pretty easy to implement. If, however,
you are using a third-party JavaScript library, such as jQuery
or Prototype, this task becomes much more difficult to
accomplish because making the change requires overwriting
or otherwise changing the internals of the library. Unless, of
course, you’re smart about how you do it.

Most libraries include, as part of their animation suite, a
mechanism for including what are referred to as “callback
functions.” A callback function is a function that you supply
to another function (or object method) so it can be called at a
predetermined time. If you’ve used JavaScript to load content
via Ajax, you’re probably familiar with the concept: callback
functions are used to do something with the data you got
back from the server.

In most cases, JavaScript libraries only offer a callback function
that runs at the completion of a given activity, but some
libraries also provide hooks for various other points during
the execution of a given routine, such as before the routine
begins. Even without additional callback hooks, however,
it’s possible to create more accessible show/hide operations.
Take the following jQuery-based snippet, for example:

(function(){
 var $button = $(‘#myButton’),
 $text = $(‘#myText’),
 visible = true;

ADAPTIVE WEB DESIGN

102

 $button.click(function(){
 if (visible) {
 $text.slideUp(‘fast’);
 } else {
 $text.slideDown(‘fast’);
 }
 visible = ! visible;
 });
})();

This script finds two elements (#myButton and #myText),
assigning them to two local variables ($button and $text,
respectively) before setting a third local variable (visible)
to track the current state of things. It then goes on to assign
an onclick event handler to #myButton that toggles
the visibility of #myText by adjusting its height. Pretty
straightforward, right?

This script works as you’d expect, but jQuery currently uses
display: none when you call slideUp(), so #myText is
being hidden via a method that prohibits the hidden text
from being read by a screen reader. By making a subtle
tweak to the code, however, we can trigger the addition of a
class we control that provides for a more accessible means
of hiding content:

(function(){
 var $button = $(‘#myButton’),
 $text = $(‘#myText’),
 visible = true;
 $button.click(function(){
 if (visible) {
 $text.slideUp(‘fast’,function(){
 $text.addClass(‘accessibly-hidden’)
 .slideDown(0);
 });
 } else {
 $text.slideUp(0,function(){

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

103

 $text.removeClass(‘accessibly-hidden’)
 .slideDown(‘fast’);
 });
 }
 visible = ! visible;
 });
})();

This script is almost identical to the last one, in that when the
content is being hidden, the library is allowed to manage the
animation, but then the script swaps the default completion
state for our custom class “accessibly-hidden,” thereby
keeping the content available to assistive technologies. When
the script goes to show the content, the steps are reversed, with
the content being hidden by the script again before the class is
removed and the actual animation is performed.

The added benefit of this approach is that you control the
method of hiding content completely, as opposed to leaving
it up to the JavaScript library. That means you can upgrade
your “accessibly-hidden” class to use a different technique if
something better comes along and you don’t have to wait for
the library to upgrade its hiding mechanism (if it ever does).

Of course all of this assumes you want to hide content from
being displayed, but you want to keep it available to older
assistive devices. If, however, you don’t want the content to
be read by a screen reader, you could use display: none, but
it’s still not the best route to go because there’s no easy way
to let the user know new content is available if you ever want
to show that content. To really provide the best experience for
you users, you’ll want to employ the roles and states defined
in the Web Accessibility Initiative’s Accessible Rich Internet
Applications spec (WAI-ARIA or ARIA, for short).2

2. http://www.w3.org/TR/wai-aria/

ADAPTIVE WEB DESIGN

104

Hiding content with ARIA is pretty straightforward: you
simply employ the aria-hidden attribute.

<p aria-hidden=”true”>Guess what? I’m accessibly
 hidden using ARIA.</p>

ARIA offers a number of predefined roles, states, and
properties that can be of tremendous use when building
a JavaScript-heavy site. There are even a handful that
are useful whether you are building a highly interactive
application or not. We’ll tackle those first.

EMPOWER WAYFINDING
One of the many ways ARIA helps improve the accessibility of
a web page is through the use of “landmark” and “structural”
roles. Many of these roles formalize the significance we had
been attempting to impart to elements for years via by applying
semantic classifications and identifiers (as we discussed in
Chapter 2). ARIA’s landmark and structural roles (and widget
roles, which we’ll get to shortly) are assigned to an element
using the role attribute.

I know, I know: role isn’t a valid attribute in HTML 4.x or
XHTML 1.x. It’s true. ARIA adds a host of new attributes to
the HTML lexicon, which means you won’t be able to validate
your pages using the same old Document Type Definitions
(DTDs) you’ve been using. If you want to validate your ARIA-
infused pages in either of these two languages, you’ll need
to use a different set of DTDs3 or make the leap to HTML5
which supports attributes like role.

3. The HTML 4.01 plus WAI-ARIA DOCTYPE is <!DOCTYPE html
PUBLIC “-//W3C//DTD HTML+ARIA 1.0//EN” “http://www.
w3.org/WAI/ARIA/schemata/html4-aria-1.dtd”>. The
XHTML plus WAI-ARIA DOCTYPE is <!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML+ARIA 1.0//EN” “http://www.w3.org/
WAI/ARIA/schemata/xhtml-aria-1.dtd”>.

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

105

Here’s a quick example of ARIA in action:

<ol role=”navigation”>
 Details
 Schedule
 Instructors
 Lodging
 Location

You should recognize this bit of markup from Chapter 2;
it’s the navigation for the Retreats 4 Geeks page. The only
difference between this and our original markup is that the
ol now has a role attribute with a value of “navigation.” As
you’d suspect, the ARIA landmark “navigation” role denotes
that an element is acting as a navigational mechanism.

All of ARIA’s landmark roles convey information about
regions of the page itself and are useful for overall page
navigation. Some assistive technologies expose these
landmarks to users, allowing them to directly move from
region to region via keystrokes or other means. They are the
logical successor to a bevy of “skip to” links.4 Structural roles,
on the other hand, act as organizational tools akin to HTML5
elements like section and article.

You may recall that, in the original example, we wrapped the
navigational ol in a new HTML5 element: nav. If you are
really on the ball, you’ll also recall that using the nav element
is semantically-equivalent to employing the landmark role
“navigation.” And this isn’t the only area of overlap between
HTML5 and ARIA.

4. “Skip to” links are links that provide anchor-based access to
regions of a page. Common implementations include “Skip to
content” and “Skip to navigation.” They were a mainstay of the
web standards world for many years, but ARIA’s landmark roles
make these links redundant.

ADAPTIVE WEB DESIGN

106

Redundancy and reason
These two specs developed independently over roughly the
same time period and each sought to address the pressing
problems they saw with the current state of HTML. (Hence,
the inevitable overlap.) The ARIA spec is currently a bit
closer to becoming a recommendation than HTML5 is
and, as a consequence, many of its unique features are
being incorporated into HTML5 as that spec continues
to develop. When HTML5 finally reaches the Candidate
Recommendation stage, it’s pretty safe to assume that the
two specs will have been successfully merged and that
redundancies will have been ironed out.

For the time being, however, there is a considerable amount
of overlap between ARIA and HTML5, especially in the case
of structural and (to a lesser extent) landmark roles. Table 5.2
provides a few examples of our traditional ad-hoc semantics,
their equivalent ARIA role, and the HTML5 element (if any)
that serves the same purpose.

AD-HOC
SEMANTICS

ARIA ROLE HTML5
ELEMENT

SEMANTIC
MEANING

#header,
#top

banner header
(kind of)

A region of the page
that is site-focused,
rather than page-
focused

#main,
#content

main none The focal content in
a document

Table 5.2: Traditional ad-hoc semantics, their equivalent ARIA role, and
the HTML5 element (if any) that serves the same purpose.

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

107

AD-HOC
SEMANTICS

ARIA ROLE HTML5
ELEMENT

SEMANTIC
MEANING

#extra,
.sidebar

complemen-
tary, note

aside A supporting section
of the document
that is related to
the main content
(“complementary”
content remains
meaningful when
separated from it)

#footer,
#bottom

contentinfo footer A region that contains
information about the
document

#nav navigation nav A region of the
page containing
navigational links

.hentry article article A region of the
page that forms an
independent part of
the document

Table 5.2: Traditional ad-hoc semantics, their equivalent ARIA role, and
the HTML5 element (if any) that serves the same purpose.

At present, there is a bit of back-and-forth between the HTML5
community and accessibility advocates over what to do about
the redundancy. From a practical standpoint, even if you are
using HTML5’s ARIA-equivalent semantics it’s generally
considered a good idea to double up with the ARIA landmark
roles because not all assistive technologies are HTML5-
aware yet. Structural roles, however, can be assigned at your
own discretion as they are purely organizational and are not
currently exposed to users via assistive technology.

A quick scan of the Retreats 4 Geeks source code will reveal
this redundancy on the nav and footer elements. As
assistive technologies are updated to be HTML5-compatible,

ADAPTIVE WEB DESIGN

108

however, we will be able to jettison the unnecessary role
attributes and streamline our markup a bit more.

In addition to overlap with HTML5, there are quite a few
roles that duplicate the semantics long available in HTML.
Consider the following ARIA landmark and structural roles:
columnheader, definition, form, heading, img, list, listitem,
row, rowheader, and separator. Some of those have one-to-
one equivalencies in HTML (e.g., “form”) and the others are a
more generalized form of what we have in HTML (e.g., “list”).

While it’s understandable that the parallel development of
ARIA and HTML5 would create some overlap, you may be
scratching your head over why ARIA would seem to recreate
semantics that have existed in HTML for over a decade.
The simple answer is that, for one reason or another, some
companies (<cough>Google</cough>) like to use non-
semantic markup (e.g., divs) as the basis for an interface and
use JavaScript to make it function like a native HTML control.
For that reason alone, ARIA provides overlapping roles. You
won’t see me running out to give a div a role of “form” (I’ll just
use a form, thank you), but to each his own I guess.

As we discussed earlier, the Retreats 4 Geeks site implements
several of the HTML5 elements that are semantically-
equivalent to ARIA’s landmark and structural roles—nav,
footer, article—but we’ve opted to include the equivalent
ARIA roles in the interest of serving the greatest number of
users. (After all, that’s what progressive enhancement is all
about, right?) We’re not done though. As we saw in Table
5.2, the semantic equivalence of an ARIA role of “banner” to
HTML5’s header is somewhat debatable so, to be absolutely
clear in the service of our users, I’ve added that role as well:

<header role=”banner”>

The only other role we haven’t touched on (since it’s
currently not addressed in HTML5) is “main,” which

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

109

indicates the focal content of the document. You may recall
from Chapter 2 that I chose a section element to enclose
the various articles on the page and that it was also the
element I chose to act as the root of our hCalendar; that
section just screams “main” to me:

<section id=”content” class=”vevent” role=”main”>

And with those two minor adjustments, we’ve covered every
landmark role that seems sensible to employ on the Retreats
4 Geeks site. Not only that, but we’ve improved the overall
accessibility of our page by providing easy ways for users of
assistive technology to move around the document.

BROTHER CAN YOU SPARE A CLUE?
In addition to providing users with a means to find their way
around a document, the ARIA spec prescribes other helpful
tools as well, not the least of which is its collection of widget
roles and states.

Widget roles do just what you’d expect them to: describe the
role of a given element. These roles are generally divided into
two camps: roles that provide a defined structure, and those
that don’t. Or, more simply, containers and components.
Containers are the elements that house the components of a
given widget.

Consider the tabbed interface shown in Figure 5.1. A tabbed
interface is constructed from two component parts: a list of
tabs and a collection of panels shown by those tabs. Those
parts break down into three separate roles in the ARIA
spec: the tabs themselves have a role of “tab,” the list of
tabs has a role of “tablist,” and each panel is assigned a
role of “tabpanel.” In terms of designations, both “tab” and
“tabpanel” are considered component roles, while “tablist” is
considered a container role (because it contains the tabs).

ADAPTIVE WEB DESIGN

110

The ARIA spec defines a number of widget roles, making it
possible to construct anything from complex form controls
(e.g., sliders and spinner boxes) to tree-based menus, modal
dialog boxes, and drag-and-drop interfaces, all while
maintaining accessibility. And, as with the structural roles
we discussed earlier, ARIA even provides mechanisms for
redefining nonsense markup as something functional:

<div role=”button”>I’m not a real button, but
 I play one on the web</div>

Of course all of this is well and good, but for any widget to
work you need JavaScript and, traditionally, that’s been an
accessibility no man’s land. The main reason that techniques
like Ajax and accessibility didn’t mesh well was that the HTML
language provided no mechanism by which JavaScript could
update the user (or her assistive technology of choice) in real-
time beyond alert() and confirm() (which, let’s face it, are
the hooligans at the back of the user interface classroom).

Figure 5.1: A tabbed interface.

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

111

The ARIA spec addresses issues of context with what are
called “states.” ARIA states are a set of attributes that can be
applied to nearly any element. Some are global in scope (i.e.,
they can be applied to any element), while others are specific
to certain widget contexts. All are prefaced with “aria-” and
they provide valuable information to the user about what is
going on with a given element.

Guess what? You’re already familiar with one: aria-hidden.
The aria-hidden attribute we discussed earlier in this
chapter accepts a boolean (“true” or “false”) value and lets the
user agent or assistive technology know whether or not the
content within should be exposed to the user. Other examples
of ARIA states include aria-disabled, aria-expanded,
aria-invalid, aria-pressed, and aria-selected.

In terms of the tabbed interface from Figure 5.1, the states
we’d likely want to employ would be aria-hidden for the
state of the tab panels and aria-selected for the state of the
tabs themselves.

But the ARIA spec doesn’t stop there. In addition to state-
indicative attributes, it also defines numerous properties
that can be set on an element. Examples include aria-
autocomplete, aria-controls, aria-label, aria-
labelledby, aria-readonly, and aria-required. As you
can see, most of the properties are meant for use with form
controls, but a few (like aria-controls) can apply to our
tabbed interface.

As you probably suspect, the aria-controls takes an
id reference for a value and that id should belong to the
element whose contents or presence is controlled by the
element to which the attribute is applied. In the case of the
tabbed interface, the tab would “control” its associated tab
panel (as shown in Figure 5.2). With the tab-to-tab-panel
relationship established, it seems only fair to establish the
relationship in the other direction as well; that’s where

ADAPTIVE WEB DESIGN

112

aria-labelledby can be put to use. It works in precisely
the same way as aria-controls.

ARIA’s states and properties go a long way toward helping
keep the user informed, but few concepts in ARIA are as
simple and immediately useful as Live Regions.

IT’S ALIVE!
With the advent of Ajax and the resurgence of JavaScript in
general, few things proved to be more of a user experience
nightmare than live-updating regions of the page. The
usability issues were numerous, but the two big ones were:
1) assistive devices weren’t aware of changes to the page
and had no way of directing a user’s attention to them; and

role=”tab” id=”recipe-0-tab”

aria-describedby=”recipe-0”

role=”tabpanel” id=”recipe-0”

aria-labelledby=”recipe-0-tab”

Figure 5.2: Using ARIA properties, we can relate pieces of an interface to
one another.

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

113

2) users taking advantage of page zoom or browsing on a
mobile device are oblivious to content updates occurring off-
screen. Thankfully, the ARIA spec includes an attribute that
directly addresses this egregious problem: aria-live.

What’s most exciting about aria-live is its simplicity.
By applying this single attribute to an element, you can
control how and when content updates within it are
presented to your users. The aria-live attribute accepts one
of three values:

1. “off” for when updates are frequent and of little importance
to the user, as in the case of a live stream from your Twitter
account (doh!);

2. “polite” for when updates are only important enough to be
announced when the user isn’t doing anything, as in the case
of updated news headlines; or

3. “assertive” for when updates are important enough to announce
immediately, as in the case of form validation messages.

In the Retreats 4 Geeks website, it makes sense to apply
aria-live to the contact form:

<article id=”contact” aria-live=”assertive”>

With that in place, users will be kept abreast of any errors
encountered when filling in their details and will also be
informed when the submission is successful.

SUPPORT AND STUMBLING BLOCKS
Since its introduction, ARIA has gotten a lot of support
from the web community. As of this writing, some level of
ARIA support is found in every major browser and has been
implemented in popular screen reading tools like JAWS,
Windows Eyes, NVDA, and Orca. Influential companies
like IBM, Sun Microsystems, Adobe, Yahoo!, and Google are
all working diligently to increase ARIA’s effectiveness and
reach. Even the Javascript community has embraced ARIA,

ADAPTIVE WEB DESIGN

114

with both Dojo Dijits5 and jQuery UI6 integrating ARIA’s
roles, states, and properties into their components. Of
course, the spec is still developing, so no implementation is
complete, but progress is being made.

I’d be remiss if I did not mention the one major issue keeping
ARIA from fitting neatly into the progressive enhancement
stack, at least when it comes to widget-related roles and states:
we have no way of testing for ARIA support in the browser
or assistive technology and, therefore, can’t make informed
decisions about how to best implement a given widget. Derek
Featherstone surfaced this issue in his excellent article for A
List Apart Entitled “ARIA and Progressive Enhancement.”7 I
highly recommend reading it to better understand the issue.
At the time of this writing, a viable solution has not been
proposed, but my fingers are crossed.

KEYSTROKE ISN’T A DIRTY WORD
The last topic I want to touch on before we wrap this, the
final chapter of my little book, is keyboard access and
controls. With the pervasiveness of the mouse and an
increased reliance on touch-based devices like the iPad, it is
relatively easy to forget about the humble keyboard, but that
would be a critical mistake. The keyboard is an incredibly
useful tool and is the standard interface for all non-visual
users and most power-users.

When it comes to the keyboard, we’ve learned a great deal in
the last few years. First off, we realized that access keys were
a good idea in theory, but not so great in practice.8 Second,

5. http://dojotoolkit.org/widgets

6. http://jqueryui.com/

7. http://alistapart.com/articles/aria-and-progressive-
enhancement/

8. http://www.wats.ca/show.php?contentid=32

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

http://www.alistapart.com/articles/aria-and-progressive-enhancement/

115

we realized that overzealous application of the tabindex
attribute could get your users jumping (and not in a good
way).9 But the most important thing we discovered is that
we could use JavaScript to “juggle” the tabindex attribute
to streamline a user’s path through a complex widget like a
tabbed interface or an accordion form.

So what exactly is tabindex juggling? Well, some time in
2005 (it’s hard to pin down the exact origin) it was discovered
that assigning a value of “-1” to the tabindex attribute of an
element would remove that element from the default tab order
of the document.10 Interestingly, despite being taken out of
the document’s tab order, the element remained focusable
via JavaScript (element.focus()), which opened up a lot of
possibilities for controlling a user’s experience.

Let’s walk through a scenario, revisiting the tabbed interface
from earlier:

1. A user arrives at the tabbed interface and clicks the tab key on
her keyboard, bringing focus to the first tab (which is associated
with the visible tab panel).

2. Clicking the tab button again moves focus out of the tab
interface to the next piece of focusable content instead of
taking her to the next tab in the list.

3. Holding shift while hitting the tab key brings the user back
into the tab list and restores focus to the currently active tab.

4. Using the arrow keys, she can move forward and backward
through the tabs in the tab list, bringing each associated tab
panel into view as she moves.

5. Hitting the enter button at any point while navigating through
the tab list brings focus to the tab panel associated with that tab.

9. http://webaim.org/techniques/keyboard/tabindex

10. This was especially interesting because, according to the W3C spec,
tabindex should only accept values between 0 and 32767.

ADAPTIVE WEB DESIGN

116

I know that’s a lot of “tabs” (and a bit of a tall order), but with
tabindex juggling and a little JavaScript it becomes quite
simple to achieve. Here’s how:

1. By assigning a tabindex of “-1” to every tab and tab panel, you
can remove them from the tab order of the page.

2. Going back and re-assigning a value of “0” to the currently active
tab restores their default position in the tab order.

3. Using JavaScript you can dynamically adjust the tabindex
property of each tab as a user executes keyboard commands like
left or right, up or down, allowing the user to move quickly and
easily through the interface.

Here’s a snippet from TabInterface’s swap method that
shows tabindex juggling in action (along with some ARIA
attribute manipulation and class swapping):

function swap(e) {
 // ...
 // De-activating the current tab & tab panel
 removeClassName(old_tab, ‘active’);
 old_tab.setAttribute(‘aria-selected’, ‘false’);
 old_tab.setAttribute(‘tabindex’, ‘-1’);
 removeClassName(old_folder, ‘visible’);
 old_folder.setAttribute(‘aria-hidden’, ‘true’);
 // Activating the new tab & tab panel
 addClassName(tab, ‘active’);
 tab.setAttribute(‘aria-selected’, ‘true’);
 tab.setAttribute(‘tabindex’, ‘0’);
 addClassName(new_folder, ‘visible’);
 new_folder.setAttribute(‘aria-hidden’, ‘false’);
 // ...
}

If you’d like to see this technique in action, you can check out
TabInterface.js on Github.11

11. http://github.com/easy-designs/TabInterface.js

PROGRESSIVE ENHANCEMENT FOR ACCESSIBILITY

117

JUST DO IT… ACCESSIBLY
Accessibility is complex and can be difficult to wrap your
mind around, but if you tackle it a little at a time, it becomes
second nature. And, as with everything else in this book,
accessibility is most easily applied in layers, building up
the interface bit by bit to create something that meets your
users’ needs, whatever they may be.

ADAPTIVE WEB DESIGN

“If you want to build a
ship, don’t drum up the
men to gather wood,
divide the work and give
orders. Instead, teach
them to yearn for the vast
and endless sea.”

— ANTOINE DE SAINT-EXUPERY

CHAPTER 6:
TAKE IT AWAY
In our brief time together, we’ve covered a lot of ground.
We witnessed progressive enhancement in action,
tracing the development of a simple text document into
a beautiful, functional, and accessible web page. It was a
whirlwind journey to be sure, but hopefully you are coming
away from it with a better picture of what progressive
enhancement is, why it works, and how to incorporate it
into your design and development process. Perhaps you’ve
even picked up a few useful techniques that you’ll be able to
apply in your own projects.

http://easy-readers.net/books/adaptive-web-design/checklist.pdf

120

THE PROGRESSIVE
ENHANCEMENT CHECKLIST
Content & HTML

 □ Author copy that is well-written and makes sense when
read aloud
This is the baseline experience for every user and it matters.

 □ Choose semantically-appropriate elements
Using the existing semantics in HTML does wonders for
accessibility (and search engine optimization).

 □ Use Microformats to fortify HTML’s gaps
Microformats are extensions to the HTML lexicon and are
supported by numerous browsers and several search engines.

 □ Use classification to group elements serving the same function
Classification (i.e., using the class attribute) helps convey
meaning about elements when HTML’s inherent semantics fail
you and no microformats fit the bill.

 □ Identify landmark elements
Identification (i.e., using the id attribute) is a great way to give
context to specific regions of a page or specific instances of a
classified element.

CSS
 □ Double check your compound selectors

Mixing selectors of vastly different complexity can cause issues
when a browser doesn’t understand one of them: the entire rule
set will be ignored. If your intent is to hide the rule set from
older browsers, however, this can be a useful tactic.

TAKE IT AWAY

121

 □ Organize your CSS rules with the cascade in mind
Order matters and proper organization of your style rules can
help you create a progressive design and make your CSS more
maintainable.

 □ Hide groups of advanced CSS rule sets from older browsers
One of the most powerful tools available in CSS for hiding rule
sets en masse is by using @media blocks.

 □ Use Conditional Comments to handle IE issues
Older versions of IE are notoriously buggy and Conditional
Comments are the best way to provide CSS and JavaScript
patches to specific versions of IE. They work best in the
“trickle-down” pattern.

 □ Make sure you’ve accounted for alternate media and contexts
Media assignment and media queries can be used to deliver
tailored layouts and experiences based on the user’s context.

JavaScript
 □ Ensure all JavaScript is “unobtrusive”

Scripts should be maintained as far from the markup as
possible and should be as generic as possible. This allows you
to re-factor them independently. Your JavaScripts should not
be tied to specific markup, but be flexible enough to adapt as
your pages evolve.

 □ Make sure all content is accessible and all necessary tasks can
be completed without JavaScript turned on
You can’t rely on JavaScript. Period. If you want to enhance with
JavaScript, follow the Hijax pattern.

 □ Use JavaScript to generate any additional markup it needs
JavaScript is great at manipulating the DOM, so there’s no
reason to hard-code markup into a page that is only there for
your script’s benefit.

ADAPTIVE WEB DESIGN

122

 □ Use JavaScript to enable script-related styles
There are few things as annoying as content being organized
into a widget and having the widget not work because
JavaScript is turned off or there’s an error in the script. Use a
switch to allow JavaScript to turn widget-related styles on.

 □ Delivered scripts à la carte whenever possible
Any script that can run independently should be designed to do
so, with its own set of tests to determine whether or not it can
run.

Accessibility
 □ Use ARIA landmarks where appropriate

If you’re using HTML5, some ARIA landmarks may seem
redundant, but it’s better to have too cover your bases.
It’s trivial to use them and they can greatly improve the
accessibility of a page.

 □ Use ARIA roles and states to provide users with more detail
about widgets
When you create a widget using JavaScript, there are very few
ways to provide users with valuable information about what is
happening when they are interacting with it. Roles and states
fill in the blanks.

 □ Use Tabindex to control a user’s journey through the page
Using the tabindex attribute, you carve a path through your
page, bringing users to the important landmarks quickly
and easily. Taking it a step further, JavaScript can be used to
adjust what can and cannot be focused as a user interacts with
various page components.

TAKE IT AWAY

123

FURTHER READING
Content & Copywriting

The Elements of Content Strategy by Erin Kissane, A Book
Apart, 2011

Content Strategy for the Web by Kristina Halvorson, New
Riders, 2009

“Writing Content that Works for a Living” by Erin Kissane,
A List Apart http://www.alistapart.com/articles/
writingcontentthatworksforaliving/

“Reviving Anorexic Web Writing” by Amber Simmons,
A List Apart http://www.alistapart.com/articles/
revivinganorexicwebwriting/

“Better Writing Through Design” by Bronwyn Jones
http://www.alistapart.com/articles/better
writingthroughdesign/

“Calling All Designers: Learn to Write!” by Derek Powazek,
A List Apart http://www.alistapart.com/articles/
learntowrite/

“Attack of the Zombie Copy” by Erin Kissane, A List Apart
http://www.alistapart.com/articles/zombiecopy/

Markup

HTML5 for Web Designers by Jeremy Keith, A Book Apart, 2010

Designing with Web Standards, 3rd Edition by Jeffrey Zeldman
and Ethan Marcotte, New Riders, 2009

Developing with Web Standards by John Allsopp,
New Riders, 2009

ADAPTIVE WEB DESIGN

http://www.alistapart.com/articles/writingcontentthatworksforaliving/
http://www.alistapart.com/articles/writingcontentthatworksforaliving/
http://www.alistapart.com/articles/revivinganorexicwebwriting/
http://www.alistapart.com/articles/revivinganorexicwebwriting/
http://www.alistapart.com/articles/learntowrite/
http://www.alistapart.com/articles/learntowrite/
http://www.alistapart.com/articles/betterwritingthroughdesign/

124

Microformats: Empowering Your Markup for Web 2.0 by John
Allsopp, Friends of ED, 2007

Web Standards Solutions: The Markup and Style Handbook,
Special Edition by Dan Cederholm, Friends of ED, 2009

“Where Our Standards Went Wrong” by Ethan Marcotte,
A List Apart http://www.alistapart.com/articles/
whereourstandardswentwrong/

“How to Grok Web Standards” by Craig Cook, A List Apart
http://www.alistapart.com/articles/grok
webstandards/

“Using XHTML/CSS for an Effective SEO Campaign” by
Brandon Olejniczak, A List Apart http://www.alistapart.
com/articles/seo/

CSS

CSS3 for Web Designers by Dan Cederholm, A Book Apart, 2010

Handcrafted CSS: More Bulletproof Web Design by Dan
Cederholm and Ethan Marcotte, New Riders, 2009

CSS Mastery: Advanced Web Standards Solutions, Second
Edition by Simon Collison, Andy Budd, and Cameron Moll,
Friends of ED, 2009

Bulletproof Web Design: Improving flexibility and protecting
against worst-case scenarios with XHTML and CSS (2nd Edition)
by Dan Cederholm, New Riders, 2007

More Eric Meyer on CSS by Eric Meyer, New Riders, 2004

Eric Meyer on CSS: Mastering the Language of Web Design by
Eric Meyer, New Riders, 2002

TAKE IT AWAY

http://www.alistapart.com/articles/whereourstandardswentwrong/
http://www.alistapart.com/articles/whereourstandardswentwrong/
http://www.alistapart.com/articles/grokwebstandards/
http://www.alistapart.com/articles/seo/
http://www.alistapart.com/articles/seo/

125

“Adaptive Layouts with Media Queries” by Aaron Gustafson,
.net Magazine, Issue 205

“Responsive Web Design” by Ethan Marcotte, A List Apart
http://www.alistapart.com/articles/responsive-
web-design/

“Accessible Data Visualization with Web Standards” by
Wilson Miner, A List Apart http://www.alistapart.com/
articles/accessibledatavisualization/

“Big, Stark & Chunky” by Joe Clark, A List Apart
http://www.alistapart.com/articles/lowvision/

“Elastic Design” by Patrick Griffiths, A List Apart
http://www.alistapart.com/articles/elastic/

“CSS Design: Going to Print” by Eric Meyer, A List Apart
http://www.alistapart.com/articles/goingtoprint/

JavaScript

Bulletproof Ajax by Jeremy Keith, New Riders, 2007

DOM Scripting by Jeremy Keith, Friends of ED, 2006

“Test-Driven Progressive Enhancement” by Scott Jehl, A List
Apart http://www.alistapart.com/articles/testdriven/

“Behavioral Separation” by Jeremy Keith, A List Apart
http://www.alistapart.com/articles/
behavioralseparation/

“Improving Link Display for Print” by Aaron Gustafson,
A List Apart http://www.alistapart.com/articles/
improvingprint/

ADAPTIVE WEB DESIGN

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/accessibledatavisualization/
http://www.alistapart.com/articles/accessibledatavisualization/
http://www.alistapart.com/articles/behavioralseparation/
http://www.alistapart.com/articles/improvingprint/
http://www.alistapart.com/articles/improvingprint/

126

“JavaScript Triggers” by Peter Paul Koch, A List Apart
http://www.alistapart.com/articles/scripttriggers/

Accessibility & ARIA

Designing with Progressive Enhancement: Building the Web that
Works for Everyone by Todd Parker, Scott Jehl, Maggie Costello
Wachs, and Patty Toland, New Riders, 2010

Just Ask: Integrating Accessibility Throughout Design by Shawn
Lawton Henry, Lulu, 2007

Design Accessible Web Sites: 36 Keys to Creating Content
for All Audiences and Platforms by Jeremy Sydik, Pragmatic
Bookshelf, 2007

“Accessible Web 2.0 Applications with WAI-ARIA” by
Martin Kliehm, A List Apart http://www.alistapart.com/
articles/waiaria/

“HTML5 and the myth of WAI-ARIA redundance” by
Steve Faulkner, The Paciello Group Blog http://www.
paciellogroup.com/blog/?p=585

“DHTML Style Guide” by AOL Developer Network
http://dev.aol.com/dhtml_style_guide

“Making Compact Forms More Accessible” by Mike Brittain,
A List Apart http://www.alistapart.com/articles/
makingcompactformsmoreaccessible/

“High Accessibility Is Effective Search Engine Optimization”
by Andy Hagans, A List Apart http://www.alistapart.com/
articles/accessibilityseo/

“What Is Web Accessibility?” by Trenton Moss, A List Apart
http://www.alistapart.com/articles/wiwa/

TAKE IT AWAY

http://www.alistapart.com/articles/waiaria/
http://www.alistapart.com/articles/waiaria/
http://www.paciellogroup.com/blog/?p=585
http://www.paciellogroup.com/blog/?p=585
http://www.alistapart.com/articles/makingcompactformsmoreaccessible/
http://www.alistapart.com/articles/makingcompactformsmoreaccessible/
http://www.alistapart.com/articles/accessibilityseo/
http://www.alistapart.com/articles/accessibilityseo/

ABOUT THE AUTHOR

Aaron has been working on the web for nearly 15 years and,
in that time, has cultivated a love of web standards and an
in-depth knowledge of website strategy and architecture,
interface design, and numerous languages (including XHTML,
CSS, JavaScript, and PHP). Aaron and his wife, Kelly McCarthy,
own Easy! Designs, a boutique web consultancy based in
Chattanooga, TN. When not neck deep in code, Aaron is
usually found evangelizing his findings and sharing his
knowledge and passion with others in the field.

Aaron has trained professionals at the New York Times,
Gartner, and the US Environmental Protection Agency
(among others), and has presented at the world’s foremost web
conferences, such as An Event Apart and Web Directions.
He is Group Manager of the Web Standards Project (WaSP)
and serves as an Invited Expert to the World Wide Web
Consortium’s Open Web Education Alliance (OWEA). He
created eCSStender, serves as Technical Editor for A List Apart,
is a contributing writer for .net Magazine, and has filled a small
library with his technical writing and editing credits.

ABOUT EASY READERS
Easy! Readers books are skillfully and cleverly written
publications that explore best practices and web standards
for seasoned and aspiring web professionals. Reigning web
practitioner, Aaron Gustafson, and industry peers author a
series of books that address holistic approaches to crafting
top-notch websites.

With a strong focus on usability and accessibility, Easy!
Readers’ mission is to guide readers through the origins,
philosophies and practical uses of various topics as they
relate to web standards. Because the web is an ever-
changing medium whose scope, audience and platform
continue to change and grow, we are dedicated to bringing
you content that is dynamic and relevant.

Easy Readers books may be purchased in bulk for educational
use. For more information, contact our educational sales
department: education@easy-readers.net.

COLOPHON
The text is set in Fresco Plus and its companion, Fresco Sans
Plus, both by Fred Smeijers. The book and chapter titles are
set in Trade Gothic by Jackson Burke. Code is set in FF OCR F
by Albert-Jan Pool.

We believe in supporting local business and sustainable
practices. This book was printed by Starkey Printing
Company in Chattanooga, Tennessee. The paper used—
100lb Chorus Art Silk Cover and 80lb Chorus Art Silk Text—
is FSC certified and made with 50% recycled (30% post-
consumer) content.

	Front Cover
	Front Matter
	Copyright Page
	Dedication
	Acknowledgements
	Table of Contents
	Foreword

	Chapter 1: Think of the User, Not the Browser
	Adapt or Die
	“Graceful” Missteps
	The Rise of Tolerance
	Tasty at any level
	The content-out approach
	Limits? There are no limits.
	Progressive enhancement = excellent customer service

	Rising to the Occasion
	Let’s Dig In

	Chapter 2: Progressive Enhancement with Markup
	From a Rough Start to the Right Way™
	The Semantic Foundation
	Saying What We Mean
	Invisible and Advisory
	Ad-hoc Semantics
	Codified Conventions
	Call me, call me anytime
	Mark your calendars

	It's the Foundation

	Chapter 3: Progressive Enhancement with CSS
	Sometimes an Error can be a Good Thing
	Concerns, Separated
	A Little Misunderstanding Goes a Long Way
	Beyond the Basics
	Not your father’s media declarations

	Rich in Layers

	Chapter 4: Progressive Enhancement with JavaScript
	Getting Out of the Way
	100% reliance
	Becoming unobtrusive
	More maintainable
	Truly flexible

	Making What We Need
	Keep it Copacetic
	Working with Style
	Planning and Restraint

	Chapter 5: Progressive Enhancement for Accessibility
	Now You See Me
	Empower Wayfinding
	Redundancy and reason

	Brother Can You Spare a Clue?
	It's Alive!
	Support and Stumbling Blocks
	Keystroke Isn’t a Dirty Word
	Just Do It… Accessibly

	Chapter 6: Take it Away
	The Progressive Enhancement Checklist
	Content & HTML
	CSS
	JavaScript
	Accessibility

	Further Reading
	Content & Copywriting
	Markup
	CSS
	JavaScript
	Accessibility & ARIA

	Back Matter
	About the Author
	About Easy Readers
	Colophon

	Back Cover

